【題目】已知函數.
(Ⅰ)設,曲線
在點
處的切線在
軸上的截距為
,求
的最小值;
(Ⅱ)若只有一個零點,求實數
的取值范圍.
【答案】(Ⅰ)-8;(Ⅱ)
【解析】
(Ⅰ)利用導數幾何意義先求出切線的方程,再根據切線方程求出,然后利用二次函數的單調性求最值;(Ⅱ)先對函數求導可得
,再通過分類討論研究函數的單調性,然后根據函數的極值的情況函數零點的關系得出
的取值范圍即可。
(Ⅰ)由已知可得,
,
,
所以曲線在點
處的切線方程為
.
令,得
.
因為,所以
在
上單調遞增,
所以當時,
.
(Ⅱ)①若,因為
或
,
,
所以在
和
上單調遞增,在
上單調遞減,
所以的極小值為
,極大值為
.
因為,若
只有一個零點,
則或
.
由,得
或
.又
,所以
.
由,得
.
因為,所以
,得
,
所以或
.
②若,
,則
在
上是增函數.
因為,所以
只有一個零點-1.
③若,因為
或
,
,
所以在
和
上單調遞增,在
上單調遞減,
所以的極小值為
,極大值為
.
因為,
,若
只有一個零點,
則,即
.
因為,所以
,得
.
綜上,實數的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】某學校為擔任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數據,其頻率分布直方圖如圖所示,將頻率視為概率.
(1)求圖中的值;
(2)估計該校擔任班主任的教師月平均通話時長的中位數;
(3)在,
這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面
平面ABCD,
是等邊三角形,四邊形ABCD是矩形,
,F為棱PA上一點,且
,M為AD的中點,四棱錐
的體積為
.
(1)若,N是PB的中點,求證:平面
平面PCD;
(2)在(Ⅰ)的條件,求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2,△ABC的面積為2
,求b+c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在實數使得
則稱
是區間
的
一內點.
(1)求證:的充要條件是存在
使得
是區間
的
一內點;
(2)若實數滿足:
求證:存在
,使得
是區間
的
一內點;
(3)給定實數,若對于任意區間
,
是區間的
一內點,
是區間的
一內點,且不等式
和不等式
對于任意
都恒成立,求證:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列,如果存在常數p,使得對任意正整數n,總有
成立,那么我們稱數列
為“p-擺動數列”.
(Ⅰ)設,
,
,判斷
、
是否為“p-擺動數列”,并說明理由;
(Ⅱ)已知“p-擺動數列”滿足
,
,求常數p的值;
(Ⅲ)設,且數列
的前n項和為
,求證:數列
是“p-擺動數列”,并求出常數p的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com