【題目】《九章算術》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為( )
(結果精確到0.1.參考數據:lg2=0.3010,lg3=0.4771.)
A. 天B.
天C.
天D.
天
科目:高中數學 來源: 題型:
【題目】在平面立角坐標系中,過點
的圓的圓心
在
軸上,且與過原點傾斜角為
的直線
相切.
(1)求圓的標準方程;
(2)點在直線
上,過點
作圓
的切線
、
,切點分別為
、
,求經過
、
、
、
四點的圓所過的定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x|+|x﹣1|.
(Ⅰ)若f(x)≥|m﹣1|恒成立,求實數m的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實數a,b滿足a2+b2=M,證明:a+b≥2ab.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市春節期間7家超市的廣告費支出(萬元)和銷售額
(萬元)數據如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與
的關系,求
關于
的線性回歸方程;
(2)用二次函數回歸模型擬合與
的關系,可得回歸方程:
,
經計算二次函數回歸模型和線性回歸模型的分別約為
和
,請用
說明選擇哪個回歸模型更合適,并用此模型預測
超市廣告費支出為3萬元時的銷售額.
參數數據及公式:,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】氣象意義上從春季進入夏季的標志為連續5天的日平均溫度均不低于22℃.現有甲、乙、丙三地連續5天的日平均溫度的記錄數據:(記錄數據都是正整數)
①甲地5個數據的中位數為24,眾數為22;
②乙地5個數據的中位數為27,總體均值為24;
③丙地5個數據中有一個數據是32,總體均值為26,總體方差為10.8.
則肯定進入夏季的地區有_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若三角形三邊的長度為連續的三個自然數,則稱這樣的三角形為“連續整邊三角形”。下列說法正確的是( )
A. “連續整邊三角形”只能是銳角三角形
B. “連續整邊三角形”不可能是鈍角三角形
C. 若“連續整邊三角形”中最大角是最小角的2倍,則這樣的三角形有且僅有1個
D. 若“連續整邊三角形”中最大角是最小角的2倍,則這樣的三角形可能有2個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(1)求證:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com