【題目】如圖甲,在直角梯形中,AB∥CD,AB⊥BC,CD=2AB=2BC=4,過A點作AE⊥CD,垂足為E,現將ΔADE沿AE折疊,使得DE⊥EC.取AD的中點F,連接BF,CF,EF,如圖乙。
(1)求證:BC⊥平面DEC;
(2)求二面角C-BF-E的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)先證明DE⊥平面ABCE 可得DE⊥BC,結合BC⊥EC,可證BC⊥平面DEC;
(2)以點E為坐標原點,分別以EA,EC,ED為x,y,z軸建立空間坐標系E-xyz,求出平面EFB和平面BCF的一個法向量,接著代入公式,可求得二面角C-BF-E的余弦值.
(1)證明:如圖,∵DE⊥EC,DE⊥AE,
∴DE⊥平面ABCE,
又∵BC平面ABCE,
∴DE⊥BC,
又∵BC⊥EC,DEEC=E,
∴BC⊥平面DEC.
(2)如圖,以點E為坐標原點,分別以EA,EC,ED為x,y,z軸建立空間坐標系E-xyz,
∴E(0,0,0),C(0,2,0),B(2,2,0),D(0,0,2),A(2,0,0),F(1,0,1)
設平面EFB的法向量
由,
所以有
∴取,得平面EFB的一個法向量
設平面BCF的法向量為
由,
所以有
∴取,得平面BCF的一個法向量
設二面角C-BF-E的大小為
則.
科目:高中數學 來源: 題型:
【題目】用系統抽樣法從140名學生中抽取容量為20的樣本,將140名學生從1~140編號.按編號順序平均分成20組(1~7號,8~14號,…,134~140號),若第17組抽出的號碼為117,則第一組中按此抽樣方法確定的號碼是( )
A.7B.5C.4D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于給定的正整數k,若數列{an}滿足
=2kan對任意正整數n(n> k) 總成立,則稱數列{an} 是“P(k)數列”.
(1)證明:等差數列{an}是“P(3)數列”;
若數列{an}既是“P(2)數列”,又是“P(3)數列”,證明:{an}是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心為
,且直線
與圓
相切,設直線
的方程為
,若點
在直線
上,過點
作圓
的切線
,切點為
.
(1)求圓的標準方程;
(2)若,試求點
的坐標;
(3)若點的坐標為
,過點
作直線與圓
交于
兩點,當
時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某調研機構,對本地歲的人群隨機抽取
人進行了一次生活習慣是否符合低碳觀念的調查,將生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結果顯示,有
人為“低碳族”,該
人的年齡情況對應的頻率分布直方圖如圖.
(1)根據頻率分布直方圖,估計這名“低碳族”年齡的平均值,中位數;
(2)若在“低碳族”且年齡在、
的兩組人群中,用分層抽樣的方法抽取
人,試估算每個年齡段應各抽取多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
過點
,其參數方程為
(
為參數,
).以
為極點,
軸非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)已知曲線與曲線
交于
兩點,且
,求實數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com