【題目】已知在四面體中,
,
,
,則四面體
外接球的表面積為__________.
【答案】
【解析】由題意可采用割補法,考慮到四面體的四個面為全等的三角形,所以可在其每個面補上一個以
,
,
為三邊的三角形作為底面,分別以x,y,z為側棱長且兩兩垂直的三棱錐,從而可得到一個長、寬、高分別為x,y,z的長方體,并且
設球半徑為
,則有
所以球的表面積為
.
點睛: (1)補形法的應用思路:“補形法”是立體幾何中一種常見的重要方法,在解題時,把幾何體通過“補形”補成一個完整的幾何體或置于一個更熟悉的幾何體中,巧妙地破解空間幾何體的體積等問題,常見的補形法有對稱補形、聯系補形與還原補形,對于還原補形,主要涉及臺體中“還臺為錐”.
(2)補形法的應用條件:當某些空間幾何體是某一個幾何體的一部分,且求解的問題直接求解較難入手時,常用該法.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線y=x2﹣6x+5與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x﹣y+a=0交于A,B兩點,且CA⊥CB求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:A1C1=AB1;
(Ⅱ)若AC⊥AB1 , ∠BCC1=120°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產的某種產品被檢測出其中一項質量指標存在問題.該企業為了檢查生產該產品的甲,乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在
內,則為合格品,否則為不合格品.表
是甲流水線樣本的頻數分布表,圖
是乙流水線樣本的頻率分布直方圖.
表 | ||||||||||||
|
圖 |
(Ⅰ)根據圖,估計乙流水線生產產品該質量指標值的中位數.
(Ⅱ)若將頻率視為概率,某個月內甲,乙兩條流水線均生產了件產品,則甲,乙兩條流水線分別生產出不合格品約多少件.
(Ⅲ)根據已知條件完成下面列聯表,并回答是否有
的把握認為“該企業生產的這種產品的質量指標值與甲,乙兩條流水線的選擇有關”?
甲生產線 | 乙生產線 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附: (其中
樣本容量)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某上市股票在30天內每股的交易價格P(元)與時間t(天)組成有序數對(t,P),點(t,P)落在下圖中的兩條線段上,該股票在30天內(包括30天)的日交易量Q(萬股)與時間t(天)的部分數據如下表所示.
第t天 | 4 | 10 | 16 | 22 |
Q(萬股) | 36 | 30 | 24 | 18 |
(1)根據提供的圖象,寫出該種股票每股交易價格P(元)與時間t(天)所滿足的函數關系式;
(2)根據表中數據確定日交易量Q(萬股)與時間t(天)的一次函數關系式;
(3)在(2)的結論下,用y(萬元)表示該股票日交易額,寫出y關于t的函數關系式,并求出這30天中第幾日交易額最大,最大值為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com