【題目】在△ABC中,a,b,c分別為角A,B,C的對邊,若 .
(1)求角A的大小;
(2)已知 ,求△ABC面積的最大值.
【答案】
(1)解:因為 ,所以(2c﹣b)cosA=acosB由正弦定理,
得(2sinC﹣sinB)cosA=sinAsinB,整理得2sinCcosA﹣sinBcosA=sinAcosB
所以2sinC﹣cosA=sin(A+B)=sinC
在△ABC中,sinC≠0,所以
(2)解:由余弦定理cosA= =
,a=2
.
∴b2+c2﹣20=bc≥2bc﹣20
∴bc≤20,當且僅當b=c時取“=”.
∴三角形的面積S= bcsinA≤5
.
∴三角形面積的最大值為5
【解析】(1)把條件中所給的既有角又有邊的等式利用正弦定理變化成只有角的形式,整理逆用兩角和的正弦公式,根據三角形內角的關系,得到結果.(2)利用余弦定理寫成關于角A的表示式,整理出兩個邊的積的范圍,表示出三角形的面積,得到面積的最大值.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:.
科目:高中數學 來源: 題型:
【題目】已知兩條直線l1:2x+y﹣2=0與l2:2x﹣my+4=0.
(1)若直線l1⊥l2 , 求直線l1與l2交點P的坐標;
(2)若l1 , l2以及x軸圍成三角形的面積為1,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設關于某設備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖并判斷是否線性相關;
(2)如果線性相關,求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設Ox、Oy是平面內相交成45°角的兩條數軸, 、
分別是x軸、y軸正方向同向的單位向量,若向量
=x
+y
,則把有序數對(x,y)叫做向量
在坐標系xOy中的坐標,在此坐標系下,假設
=(﹣2,2
),
=(2,0),
=(5,﹣3
),則下列命題不正確的是( )
A. =(1,0)
B.| |=2
C. ∥
D. ⊥
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= cos(2x﹣
).
(1)若sinθ=﹣ ,θ∈(
,2π),求f(θ+
)的值;
(2)若x∈[ ,
],求函數f(x)的單調減區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:數列{an}前n項的乘積Tn=a1a2…an , 數列an=29﹣n , 則下面的等式中正確的是( )
A.T1=T19
B.T3=T17
C.T5=T12
D.T8=T11
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】市疾病控制中心今日對我校高二學生進行了某項健康調查,調查的方法是采取分層抽樣的方法抽取樣本.我校高二學生共有2000人,抽取了一人200人的樣本,樣本中男生103人,請問我校共有女生( )
A.970
B.1030
C.997
D.206
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+bx+c,其對稱軸為y軸(其中b,c為常數) (Ⅰ)求實數b的值;
(Ⅱ)記函數g(x)=f(x)﹣2,若函數g(x)有兩個不同的零點,求實數c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對任意c∈R成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com