【題目】已知函數f(x)= cos(2x﹣
).
(1)若sinθ=﹣ ,θ∈(
,2π),求f(θ+
)的值;
(2)若x∈[ ,
],求函數f(x)的單調減區間.
【答案】
(1)解:函數f(x)= cos(2x﹣
),
∴f(θ+ )=
cos[2(θ+
)﹣
]
= cos(2θ+
)
= (cos2θcos
﹣sin2θsin
)
=cos2θ﹣sin2θ;…(2分)
又 ,
∴ ,
∴ ,
∴ ;…
∴
(2)解:由 ,(k∈Z)
得: ,(k∈Z);
又∵ ,
所以函數f(x)的單調減區間為:
【解析】(I)利用三角恒等變換化簡函數f(θ+ ),根據同角的三角函數關系,求值即可;(II)由正弦函數的圖象與性質,求出f(x)在
上的單調減區間.
【考點精析】關于本題考查的兩角和與差的余弦公式和正弦函數的單調性,需要了解兩角和與差的余弦公式:;正弦函數的單調性:在
上是增函數;在
上是減函數才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知曲線f(x)= (x>0)上有一點列Pn(xn , yn)(n∈N*),過點Pn在x軸上的射影是Qn(xn , 0),且x1+x2+x3+…+xn=2n+1﹣n﹣2.(n∈N*)
(1)求數列{xn}的通項公式;
(2)設四邊形PnQnQn+1Pn+1的面積是Sn , 求Sn;
(3)在(2)條件下,求證: +
+…+
<4.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調遞增區間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對任意x∈(﹣
,
)恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品的三個質量指標分別為x,y,z,用綜合指標S=x+y+z評價該產品的等級.若S≤4,則該產品為一等品.現從一批該產品中,隨機抽取10件產品作為樣本,其質量指標列表如下:
產品編號 | A1 | A2 | A3 | A4 | A5 |
質量指標 | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產品編號 | A6 | A7 | A8 | A9 | A10 |
質量指標 | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(1)利用上表提供的樣本數據估計該批產品的一等品率.
(2)在該樣品的一等品中,隨機抽取2件產品, ①用產品編號列出所有可能的結果;
②設事件B為“在取出的2件產品中,每件產品的綜合指標S都等于4”,求事件B發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某校高三1200名學生中隨機抽取40名,將他們一次數學模擬成績繪制成頻率分布直方圖(如圖)(滿分為150分,成績均為不低于80分整數),分為7段:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].
(1)求圖中的實數a的值,并估計該高三學生這次成績在120分以上的人數;
(2)在隨機抽取的40名學生中,從成績在[90,100)與[140,150]兩個分數段內隨機抽取兩名學生,求這兩名學生的成績之差的絕對值標不大于10的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一條光線從點(﹣2,﹣3)射出,經y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com