【題目】已知a=(5cos x,cos x),b=(sin x,2cos x),設函數f(x)=a·b+|b|2+
.
(1) 求函數f (x)的最小正周期和對稱中心;
(2) 當時,求函數f(x)的值域;
(3) 該函數y=f (x)的圖象可由的圖象經過怎樣的變換得到?
【答案】(1);(2)
;(3)見解析
【解析】
(1)根據向量的坐標及
,可得
,化簡后即可得出
,從而求出的最小正周期及對稱中心;
(2)由的范圍即可求出
的范圍,從而求出
的值域.
(3)根據的圖象變換規律即可得解.
(1) f (x)=a·b+|b|2+=5
sin xcos x+2cos2x+4cos2x+sin2x+
=5sin xcos x+5cos2x+
=
sin 2x+5×
+
=5sin(2x+
)+5.
,
(2) f (x)=5sin(2x+)+5. 由
≤x≤
,得
≤2x+
≤
,∴-
≤sin(2x+
)≤1,
∴當≤x≤
時,函數f(x)的值域為[
,10].
(3) 將函數的圖象向左平移個單位,再將得函數的圖象縱坐標不變,橫坐標伸長為原來的兩倍,最后將所得函數的圖象橫坐標不變,縱坐標伸長為原來的5倍得到函數
的圖象,再把所得函數的圖象橫坐標不變,圖像沿
周正方向向上平移5個單位得到
的圖像.
科目:高中數學 來源: 題型:
【題目】x的取值范圍為[0,10],給出如圖所示程序框圖,輸入一個數x.
(1)請寫出程序框圖所表示的函數表達式;
(2)求輸出的y(y<5)的概率;
(3)求輸出的y(6<y≤8)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經銷商經銷某種農產品,在一個銷售季度內,每售出1t該產品獲利潤500元,未售出的產品,每1t虧損300元.根據歷史資料,得到銷售季度內市場需求量的頻率分布直方圖,如圖所示.經銷商為下一個銷售季度購進了130t該農產品.以x(單位:t,100≤x≤150)表示下一個銷售季度內的市場需求量,T(單位:元)表示下一個銷售季度內經銷該農產品的利潤.
(1)將T表示為x的函數;
(2)根據直方圖估計利潤T不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,并以需求量落入該區間的頻率作為需求量取該區間中點值的概率(例如:若x∈[100,110))則取x=105,且x=105的概率等于需求量落入[100,110)的頻率,求T的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.
(1)求n的值;
(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;
(3)抽獎活動的規則是:代表通過操作按鍵使電腦自動產生兩個[0,1]之間的均勻隨機數x,y,并按如圖所示的程序框圖執行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有關部門要了解甲型H1N1流感預防知識在學校的普及情況,命制了一份有10道題的問卷到各個學校做問卷調查。某中學A,B兩個班各被隨機抽取5名學生接受問卷調查,A班5名學生得分分別為;5, 8, 9, 9, 9:B班5名學生的得分分別為;6, 7, 8, 9, 10。
(1)請你分析A,B兩個班中哪個班的問卷得分要穩定些;
(2)如果把B班5名學生的得分看成一個總體,并用簡單隨機抽樣方法從中抽取容量為2的樣本,求樣本平均數與總體平均數之差的絕對值不小于1的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=4x,焦點為F,過點P(﹣1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點,直線AF,BF分別交拋物線C于M,N兩點,若 +
=18,則k= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)求函數的最小正周期;
(2)將函數的圖象向右平移
個單位長度,再向下平移
(
)個單位長度后得到函數
的圖象,且函數
的最大值為2.
(。┣蠛瘮的解析式; (ⅱ)證明:存在無窮多個互不相同的正整數
,使得
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖 1,在直角梯形中,
,且
.現以
為一邊向形外作正方形
,然后沿邊
將正方形
翻折,使
平面與平面
垂直,
為
的中點,如圖 2.
(1)求證: 平面
;
(2)求證: 平面
;
(3)求點到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有4個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從盒子中不放回隨機抽取兩個球,求取出的球的編號之和不大于4的概率;
(2)先從盒子中隨機取一個球,該球的編號為,將球放回盒子中,然后再從盒子中隨機取一個球,該球的編號為
,求
的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com