精英家教網 > 高中數學 > 題目詳情

【題目】已知函數

(1)求函數的最小正周期;

(2)將函數的圖象向右平移個單位長度,再向下平移)個單位長度后得到函數的圖象,且函數的最大值為2.

(ⅰ)求函數的解析式; (ⅱ)證明:存在無窮多個互不相同的正整數,使得

【答案】(1);(2)見解析.

【解析】

)因為

所以函數的最小正周期

)()將的圖象向右平移個單位長度后得到的圖象,再向下平移)個單位長度后得到的圖象.

又已知函數的最大值為,所以,解得

所以

)要證明存在無窮多個互不相同的正整數,使得,就是要證明存在無窮多個互不相同的正整數,使得,即

知,存在,使得

由正弦函數的性質可知,當時,均有

因為的周期為,

所以當)時,均有

因為對任意的整數,,

所以對任意的正整數,都存在正整數,使得

亦即存在無窮多個互不相同的正整數,使得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐,底面為等腰梯形,且底面與側面垂直, , 分別為線段的中點, , , ,.

1證明: 平面;

2與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用1,2,3,4,5,6組成數字不重復的六位數,滿足1不在左右兩端,2,4,6三個偶數中,有且只有兩個偶數相鄰,則這樣的六位數的個數為( 。
A.432
B.288
C.216
D.144

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a=(5cos x,cos x),b=(sin x,2cos x),設函數f(x)=a·b+|b|2.

(1) 求函數f (x)的最小正周期和對稱中心

(2) 時,求函數f(x)的值域;

(3) 該函數y=f (x)的圖象可由的圖象經過怎樣的變換得到?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面直角坐標系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣ =0交M于A,B兩點,P為AB的中點,且OP的斜率為
(1)求M的方程
(2)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的半焦距為左焦點為,右頂點為,拋物線與橢圓交于兩點,若四邊形是菱形,則橢圓的離心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在正方體中, 在線段上運動且不與, 重合,給出下列結論:

;

平面;

二面角的大小隨點的運動而變化;

三棱錐在平面上的投影的面積與在平面上的投影的面積之比隨點的運動而變化;

其中正確的是(

A. ①③④ B. ①③

C. ①②④ D. ①②

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法:

①將一組數據中的每個數據都加上或減去同一個常數后,方差恒不變;

②設有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;

③線性回歸直線必過

④曲線上的點與該點的坐標之間具有相關關系;

⑤在一個2×2列聯表中,由計算得K2=13.079.則其兩個變量間有關系的可能性是90%.

其中錯誤的個數是( )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場經銷某商品,根據以往資料統計,顧客采用的付款期數X的分布列為

X

1

2

3

4

5

P

0.4

0.2

0.2

0.1

0.1

商場經銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元.Y表示經銷一件該商品的利潤.

(1)求事件:“購買該商品的3位顧客中,至少有1位采用1期付款”的概率P(A);

(2)求Y的分布列及E(Y).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视