【題目】已知雙曲線的焦點是橢圓
:
(
)的頂點,且橢圓與雙曲線的離心率互為倒數.
(Ⅰ)求橢圓的方程;
(Ⅱ)設動點,
在橢圓
上,且
,記直線
在
軸上的截距為
,求
的最大值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】試題分析:(I)雙曲線的焦點為,離心率為
,對于橢圓來說,
,由此求得
和橢圓的方程.(II)設出直線的方程,聯立直線的方程和橢圓的方程,利用判別式求得
的一個不等關系,利用韋達定理和弦長公式,求得
一個等量關系,利用
表示
,進而用基本不等式求得
的最大值.
試題解析:
(Ⅰ)雙曲線的焦點坐標為
,離心率為
.
因為雙曲線的焦點是橢圓
:
(
)的頂點,且橢圓與雙曲線的離心率互為倒數,所以
,且
,解得
.
故橢圓的方程為
.
(Ⅱ)因為,所以直線
的斜率存在.
因為直線在
軸上的截距為
,所以可設直線
的方程為
.
代入橢圓方程得
.
因為
,
所以.
設,
,
根據根與系數的關系得,
.
則
.
因為,即
.
整理得.
令,則
.
所以
.
等號成立的條件是,此時
,
滿足
,符合題意.
故的最大值為
.
科目:高中數學 來源: 題型:
【題目】已知△OAB的頂點坐標為O(0,0),A(2,9),B(6,﹣3),點P的橫坐標為14,且 =λ
,點Q是邊AB上一點,且
=0.
(1)求實數λ的值與點P的坐標;
(2)求點Q的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是將一正方體貨物沿坡面AB裝進汽車貨廂的平面示意圖.已知長方體貨廂的高度BC為 米,tanA=
,現把圖中的貨物繼續往前平移,當貨物頂點D與C重合時,仍可把貨物放平裝進貨廂,求BD的長.(結果保留根號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有正方形ABCD和一個以O為直角頂點的三角板,移動三角板,使三角板兩直角邊所在直線分別與直線BC、CD交于點M、N.
(1)如圖1,若點O與點A重合,則OM與ON的數量關系是
(2)如圖2,若點O在正方形的中心(即兩對角線交點),則(1)中的結論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內部(含邊界),當OM=ON時,請探究點O在移動過程中可形成什么圖形?
(4)如圖4,是點O在正方形外部的一種情況.當OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結論.(不必說明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題錯誤的是 ( )
A. 如果平面平面
,那么平面
內一定存在直線平行于平面
B. 如果平面不垂直平面
,那么平面
內一定不存在直線垂直于平面
C. 如果平面平面
,平面
平面
,且
,那么
D. 如果平面平面
,那么平面
內所有直線都垂直于平面
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場擬對某商品進行促銷,現有兩種方案供選擇,每種促銷方案都需分兩個月實施,且每種方案中第一個月與第二個月的銷售相互獨立.根據以往促銷的統計數據,若實施方案1,預計第一個月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個月的銷量是第一個月的1.4倍和1.6倍的概率都是0.5;若實施方案2,預計第一個月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個月的銷量是第一個月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實施方案
的第二個月的銷量是促銷前銷量的倍數.
(Ⅰ)求,
的分布列;
(Ⅱ)不管實施哪種方案, 與第二個月的利潤之間的關系如下表,試比較哪種方案第二個月的利潤更大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y=﹣ +bx+c與y軸交于點C,與x軸的兩個交點分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點P的坐標;
(3)已知點E在x軸上,點F在拋物線上,是否存在以A,C,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點的坐標為
,圓
的方程為
,動點
在圓
上運動,點
為
延長線上一點,且
.
(1)求點的軌跡方程.
(2)過點作圓
的兩條切線
,
,分別與圓
相切于點
,
,求直線
的方程,并判斷直線
與點
所在曲線的位置關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com