【題目】從甲、乙兩班各隨機抽取10名同學,下面的莖葉圖記錄了這20名同學在2018年高考語文作文題目中的成績(單位:分).已知語文作文題目滿分為60分,“分數分,為及格;分數
分,為高分”,若甲、乙兩班的成績的平均分都是44分,
(1)求的值;
(2)若分別從甲、乙兩班隨機各抽取1名成績為高分的學生,求抽到的學生中,甲班學生成績高于乙班學生成績的概率.
【答案】(1) ,
(2)
【解析】
(1)由平均數的計算公式,結合題中數據即可求出結果;
(1)用列舉法列舉“甲班學生成績高于乙班學生成績”所包含的基本事件,以及“分別從甲、乙兩班隨機各抽取1名成績為高分的學生”所包含的基本事件總數,基本事件的個數比即是所求概率.
解:(1)因為甲的平均數為44,
所以,解得
.
同理,因為乙的平均數為44.
所以,解得
.
(2)甲班成績不低于高分的學生成績分別為48,50,52,56共4人,乙班成績不低于高分的學生成績分別為50,52,57,58共4人,記表示從甲、乙兩班隨機各抽取1名學生的成績,其中前一個數
表示從甲班隨機抽取1名學生的成績,后一個數
表示從乙班隨機抽取1名學生的成績.
從甲、乙兩班隨機各抽取1名成績為高分的學生,共有種情況;
其中,甲班學生成績高于乙班學生成績的有,
,
共3種;
故由古典概型得,抽到的學生中,甲班學生成績高于乙班學生成績的概率.
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了至
月份每月
號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:
日期 |
|
|
|
|
|
|
晝夜溫差 | ||||||
就診人數 | 16 |
該興趣小組確定的研究方案是:先從這六組數據中選取組,用剩下的
組數據求線性回歸方程,再用被選取的
組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰兩個月的概率;
(2)若選取的是月與
月的兩組數據,請根據
至
月份的數據,求出
關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B分別為雙曲線 (a>0,b>0)的左、右頂點,雙曲線的實軸長為4
,焦點到漸近線的距離為
.
(1)求雙曲線的方程;
(2)已知直線y=x-2與雙曲線的右支交于M,N兩點,且在雙曲線的右支上存在點D,使
,求t的值及點D的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知非零復數,
,
;若
,
,
滿足
,
.
(1)求的值;
(2)若所對應點
在圓
,求
所對應的點的軌跡;
(3)是否存在這樣的直線,
對應點在
上,
對應點也在直線
上?若存在,求出所有這些直線;若不存在,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校的1000名高三學生參加四門學科的選拔考試,每門試卷共有10道題,每題10分,規定:每門錯題成績記為
,錯
題成績記為
,錯
題成績記為
,錯
題成績記為
,在錄取時,
記為90分,
記為80分,
記為60分,
記為50分.
根據模擬成績,每一門都有如下統計表:
答錯 題數 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
頻數 | 10 | 90 | 100 | 150 | 150 | 200 | 100 | 100 | 50 | 49 | 1 |
已知選拔性考試成績與模擬成績基本吻合.
(1)設為高三學生一門學科的得分,求
的分布列和數學期望;
(2)預測考生4門總分為320概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,且
,其中
,
,
分別是
,
,
的中點,動點
在線段
上運動時,下列四個結論:①
;②
;③
面
;④
面
,
其中恒成立的為( )
A. ①③ B. ③④ C. ①④ D. ②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,定義兩點與
之間的“直角距離”為:
.現給出下列4個命題:
①已知、
,則
為定值;
②已知三點不共線,則必有
;
③用表示
兩點之間的距離,則
;
④若是橢圓
上的任意兩點,則
的最大值為6.
則下列判斷正確的為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com