【題目】某公司每個工作日由位于市區的總公司向位于郊區的分公司開一個來回的班車(每年按200個工作日計算),現有兩種使用班車的方案,方案一是購買一輛大巴,需花費90萬元,報廢期為10年,車輛平均每年的各種費用合計5萬元,司機年工資6萬元,司機每天請假的概率為0.1(每年請假時間不超過15天不扣工資,超過15天每天100元),若司機請假則需從公交公司雇傭司機,每天支付300元工資.方案二是租用公交公司的車輛(含司機),根據調研每年12個月的車輛需求指數如直方圖所示,其中當某月車輛需求指數在時,月租金為
萬元.
(1)若購買大巴,設司機每年請假天數為,求公司因司機請假而增加的花費
(元)及使用班車年平均花費
(萬元)的數學期望
.
(2)試用調研數據,給出公司使用班車的建議,使得年平均花費最少.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x2﹣ax﹣1,x∈[﹣5,5]
(1)當a=2,求函數f(x)的最大值和最小值;
(2)若函數f(x)在定義域內是單調函數,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)求函數f(x)+g(x)的定義域;
(2)判斷f(x)+g(x)的奇偶性,并說明理由;
(3)求使f(x)﹣g(x)>0成立的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= 為奇函數.
(1)求實數a的值;
(2)試判斷函數的單調性并加以證明;
(3)對任意的x∈R,不等式f(x)<m恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)= +lg(1+3x)的定義域是( )
A.(﹣∞,﹣ )?
B.(﹣ ,
)∪(
,+∞)?
C.( ,+∞)?
D.( ,
)∪(
,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,把方程f(x)=x的根按從小到大的順序排列成一個數列,則該數列的通項公式為( )
A. (n∈N*)
B.an=n(n﹣1)(n∈N*)
C.an=n﹣1(n∈N*)
D.an=2n﹣2(n∈N*)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,E是正方形ABCD所在平面外一點,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四個命題:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作為鄰邊的平行四邊形面積是8;
(4)∠EAD=60°.
其中正確命題的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知0<a<1,函數f(x)=loga(ax﹣1)
(I)求函數f(x)的定義域;
(Ⅱ)判斷f(x)的單調性;
(Ⅲ)若m滿足f(1﹣m)≥f(1﹣m2),求m的范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com