精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)= +lg(1+3x)的定義域是(
A.(﹣∞,﹣ )?
B.(﹣ , )∪( ,+∞)?
C.( ,+∞)?
D.( )∪( ,+∞)

【答案】B
【解析】解:由1﹣2x≠0.1+3x>0, 可得x>﹣ ,且x≠
則定義域為(﹣ )∪( ,+∞),
故選:B.
【考點精析】通過靈活運用函數的定義域及其求法,掌握求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數 (a>0).
(1)證明:當x>0時,f(x)在 上是減函數 ,在上是增函數,并寫出當x<0時f(x)的單調區間;
(2)已知函數 ,函數g(x)=﹣x﹣2b,若對任意x1∈[1,3],總存在x2∈[1,3],使得g(x2)=h(x1)成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某房產開發商投資81萬元建一座寫字樓,第一年裝修費為1萬元,以后每年增加裝修費2萬元,現把寫字樓出租,每年收入租金30萬元.
(1)若扣除投資和各種裝修費,則從第幾年開始獲取純利潤?
(2)若干年后開發商為了投資其他項目,有兩種處理方案:
①年平均利潤最大時,以50萬元出售該樓;
②純利潤總和最大時,以10萬元出售該樓;
問選擇哪種方案盈利更多?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|0< ≤1},B={y|y=( x , 且x<﹣1}
(1)若集合C={x|x∈A∪B,且xA∩B},求集合C;
(2)設集合D={x|3﹣a<x<2a﹣1},滿足A∪D=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司每個工作日由位于市區的總公司向位于郊區的分公司開一個來回的班車(每年按200個工作日計算),現有兩種使用班車的方案,方案一是購買一輛大巴,需花費90萬元,報廢期為10年,車輛平均每年的各種費用合計5萬元,司機年工資6萬元,司機每天請假的概率為0.1(每年請假時間不超過15天不扣工資,超過15天每天100元),若司機請假則需從公交公司雇傭司機,每天支付300元工資.方案二是租用公交公司的車輛(含司機),根據調研每年12個月的車輛需求指數如直方圖所示,其中當某月車輛需求指數在時,月租金為萬元.

(1)若購買大巴,設司機每年請假天數為,求公司因司機請假而增加的花費(元)及使用班車年平均花費(萬元)的數學期望.

(2)試用調研數據,給出公司使用班車的建議,使得年平均花費最少.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:關于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命題q:函數y=lg(x2﹣x+a)的定義域為R,若p∨q為真p∧q為假,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)是R上的偶函數,對于任意x∈R,都有f(x+6)=f(x)+f(3)成立,當x1 , x2∈[0,3],且x1≠x2時,都有 .給出下列命題: ①f(3)=0;
②直線x=﹣6是函數y=f(x)的圖象的一條對稱軸;
③函數y=f(x)在[﹣9,﹣6]上為增函數;
④函數y=f(x)在[﹣9,9]上有四個零點.
其中所有正確命題的序號為(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數學家祖沖之的兒子祖暅首先提出來的,祖暅原理的內容是:夾在兩個平行平面間的兩個幾何體,被平行于這兩個平行平面的平面所截,如果截得兩個截面的面積總相等,那么這兩個幾何體的體積相等.已知,兩個平行平面間有三個幾何體,分別是三棱錐、四棱錐、圓錐(高度都為),其中:三棱錐的底面是正三角形(邊長為),四棱錐的底面是有一個角為的菱形(邊長為),圓錐的體積為,現用平行于這兩個平行平面的平面去截三個幾何體,如果截得的三個截面的面積相等,那么,下列關系式正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)上的動點到焦點距離的最小值為 -1.以原點為圓心、橢圓的短半軸長為半徑的圓與直線x﹣y+ =0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓C相交于A,B兩點,P為橢圓上一點,且滿足 + =t (O為坐標原點).當|AB|= 時,求實數t的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视