精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x)=x2+(2+lga)x+lgb,f(﹣1)=﹣2且f(x)≥2x恒成立,求a、b的值.

【答案】解:由f(﹣1)=﹣2得:1﹣(2+lga)+lgb=﹣2
即lgb=lga﹣1 ①,

由f(x)≥2x恒成立,即x2+(lga)x+lgb≥0,
∴lg2a﹣4lgb≤0,
把①代入得,lg2a﹣4lga+4≤0,(lga﹣2)2≤0
∴lga=2,
∴a=100,b=10
【解析】已知f(x)=x2+(2+lga)x+lgb,f(﹣1)=﹣2,代入求得a和b的關系式,再根據f(x)≥2x恒成立,將其轉化為lg2a﹣4lgb≤0,從而求出a,b的值;
【考點精析】利用二次函數的性質對題目進行判斷即可得到答案,需要熟知當時,拋物線開口向上,函數在上遞減,在上遞增;當時,拋物線開口向下,函數在上遞增,在上遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】探究函數的最小值,并確定取得最小值時x的值.列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.002

4.04

4.3

5

4.8

7.57

請觀察表中y值隨x值變化的特點,完成以下的問題.

函數在區間(0,2)上遞減;

函數在區間 上遞增.

時, .

證明:函數在區間(0,2)遞減.

思考:函數時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】凸函數的性質定理為:如果函數f(x)在區間D上是凸函數,則對于區間D內的任意x1 , x2 , …,xn , 有 ≤f( ),已知函數y=sinx在區間(0,π)上是凸函數,則在△ABC中,sinA+sinB+sinC的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電影院共有1000個座位,票價不分等次,根據影院的經營經驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入)
問:
(1)把y表示為x的函數,并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 ,設函數,且的圖象過點和點.

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個單位后得到函數的圖象.若的圖象上各最高點到點的距離的最小值為1,求的單調增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋中共有8個球,其中3個紅球、2個白球、3個黑球.若從袋中任取3個球,則所取3個球中至多有1個紅球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+ax+b(a,b∈R),
(1)若函數f(x)在區間[﹣1,1]上不單調,求實數a的取值范圍;
(2)記M(a,b)是|f(x)|在區間[﹣1,1]上的最大值,證明:當|a|≥2時,M(a,b)≥2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義max{{x,y}= ,設f(x)=max{ax﹣a,﹣logax}(x∈R+ , a>0,a≠1).若a= ,則f(2)+f( )=;若a>1,則不等式f(x)≥2的解集是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2x﹣2x
(1)判斷函數f(x)的奇偶性;
(2)證明:函數f(x)為(﹣∞,+∞)上的增函數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视