精英家教網 > 高中數學 > 題目詳情

【題目】某學校食堂對30名高三學生偏愛蔬菜與偏愛肉類進行了一次調查,將統計數據制成如下表格:

偏愛蔬菜

偏愛肉類

男生

4

8

女生

16

2

1)求這30名學生中偏愛蔬菜的概率;

2)根據表格中的數據,是否有99.5%的把握認為偏愛蔬菜與偏愛肉類與性別有關?

附:.

0

0

0

6

7

10.8

【答案】12)有

【解析】

1)根據表格知30人中偏愛蔬菜的20人,利用古典概型計算即可;

2)計算,與臨界值比較可得出結論.

1)由已知抽取學生總數30人,其中偏愛蔬菜的有人,

由古典概型的概率計算公式,

得所求的概率.

2)由已知,列聯表為

偏愛蔬菜

偏愛肉類

合計

男生/

4

8

12

女生/

16

2

18

合計

20

10

30

所以

故有99.5%的把握認為偏愛蔬菜與偏愛肉類與性別有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在坐標軸上,且經過,.

(Ⅰ)求橢圓的標準方程和離心率;

(Ⅱ)四邊形的四個頂點都在橢圓上,且對角線,過原點,若,求證:四邊形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)處的切線方程;

(2)若時,恒成立,求實數的取值范圍;

(3)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CAAB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】商場銷售某種商品的經驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式,其中,為常數,已知銷售價格為5/千克時,每日可售出該商品11千克.

(1) 的值;

(2) 若商品的成品為3/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐,,點在底面上的射影是的中點

1)求證:直線平面;

2)若,分別為、的中點,求直線與平面所成角的正弦值;

3)當四棱錐的體積最大時,求二面角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數滿足以下三個條件:①對于任意的,都有;②對于任意的都有③函數的圖象關于y軸對稱,則下列結論中正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C1y=cos xC2y=sin (2x+),則下面結論正確的是( )

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的質量以其質量指標值衡量,質量指標值越大表明質量越好,現用一種新配方做試驗,生產了100件這種產品,并測量了每件產品的質量指標值,得到下面試驗結果:

質量指標值

頻數

6

26

38

22

8

(1)將答題卡上列出的這些數據的頻率分布表填寫完整,并補齊頻率分布直方圖;

(2)估計這種產品質量指標值的平均值(同一組中的數據用該組區間的中點值作代表)與中位數(結果精確到0.1).

質量指標值分組

頻數

頻率

6

0.06

合計

100

1

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视