已知函數
(1)如果函數的單調減區間為
,求函數
的解析式;
(2)在(1)的條件下,求函數的圖像過點
的切線方程;
(3)證明:對任意的,不等式
恒成立,求實數
的取值范圍。
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知函數,
,記
。
(Ⅰ)判斷的奇偶性,并證明;
(Ⅱ)對任意,都存在
,使得
,
.若
,求實數
的值;
(Ⅲ)若對于一切
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)我們把同時滿足下列兩個性質的函數稱為“和諧函數” :
①函數在整個定義域上是單調增函數或單調減函數;
②在函數的定義域內存在區間,使得函數在區間
上的值域為
.
⑴已知冪函數的圖像經過點
,判斷
是否是和諧函數?
⑵判斷函數是否是和諧函數?
⑶若函數是和諧函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)探究函數的最小值,并確定取得最小值時x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數定義域為
,且
.
設點是函數圖像上的任意一點,過點
分別作直線
和
軸的垂線,垂足分別為
.
(1)寫出的單調遞減區間(不必證明);(4分)
(2)設點的橫坐標
,求
點的坐標(用
的代數式表示);(7分)
(3)設為坐標原點,求四邊形
面積的最小值.(7分)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com