【題目】已知函數.
(1)當時,求函數
的單調區間;
(2)若函數的導函數
在
上有三個零點,求實數a的取值范圍.
【答案】(1)單調遞增區間為,單調遞減區間為
.(2)
【解析】
(1)求出函數的定義域、導函數,當時,即可求出函數
的單調區間;
(2)由,可知
為
的一個零點,要使
在
上有三個零點,即方程
在
上有2個不同的實數根,參變分離將問題等價轉化為函數
與直線
有2個交點,利用導數分析
的單調性與最值,即可得到
的取值范圍.
解:(1)
.
當時,
,
令,得
,則
,
故當時,
,函數
單調遞減,
當時,
,函數
單調遞增,
故函數的單調遞增區間為
,單調遞減區間為
.
(2)由,可知
為
的一個零點,
則方程在
上有2個不同的實數根,
即在
上有2個不同的實數根,
問題等價于函數與直線
有2個交點,
,
令,則
,
當
時,
,函數
單調遞增,
當時,
,函數
單調遞減,
.
,且
,
,
故實數a的取值范圍為.
科目:高中數學 來源: 題型:
【題目】設滿足以下兩個條件的有窮數列為
階“期待數列”:①
;②
.
(1)若等比數列為
階“期待數列”
,求公比
;
(2)若一個等差數列既是
階“期待數列”又是遞增數列
,求該數列的通項公式;
(3)記階“期待數列”
的前
項和為
,求證;數列
不能為
階“期待數列”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海洋藍洞是地球罕見的自然地理現象,被喻為“地球留給人類保留宇宙秘密的最后遺產”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑,
兩點間的距離,現在珊瑚群島上取兩點
,
,測得
,
,
,
,則
,
兩點的距離為___.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一件剛出土的珍貴文物要在博物館大廳中央展出,需要設計各面是玻璃平面的無底正四棱柱將其罩住,罩內充滿保護文物的無色氣體.已知文物近似于塔形,高1.8米,體積0.5立方米,其底部是直徑為0.9米的圓形,要求文物底部與玻璃罩底邊至少間隔0.3米,文物頂部與玻璃罩上底面至少間隔0.2米,氣體每立方米1000元,則氣體費用最少為( )元
A.4500B.4000C.2880D.2380
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界.
(1)設,判斷
在
上是否為有界函數,若是,請說明理由,并寫出
的所有上界
的集合;若不是,也請說明理由;
(2)若函數在
上是以
為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1所示,在等腰梯形ABCD中,,
,垂足為E,
,
將
沿EC折起到
的位置,如圖2所示,使平面
平面ABCE.
(1)連結BE,證明:平面
;
(2)在棱上是否存在點G,使得
平面
,若存在,直接指出點G的位置
不必說明理由
,并求出此時三棱錐
的體積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年是中國成立70周年,也是全面建成小康社會的關鍵之年.為了迎祖國70周年生日,全民齊心奮力建設小康社會,某校特舉辦“喜迎國慶,共建小康”知識競賽活動.下面的莖葉圖是參賽兩組選手答題得分情況,則下列說法正確的是( )
A.甲組選手得分的平均數小于乙組選手的平均數B.甲組選手得分的中位數大于乙組選手的中位數
C.甲組選手得分的中位數等于乙組選手的中位數D.甲組選手得分的方差大于乙組選手的的方差
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視臺舉行一個比賽類型的娛樂節目,A、B兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數據,繪制成莖葉圖如圖所示,為了增加節目的趣味性,主持人故意將A隊第六位選手的成績沒有給出,并且告知大家B隊的平均分比A隊的平均分多4分,同時規定如果某位選手的成績不少于21分,則獲得“晉級”.
(1)根據莖葉圖中的數據,求出A隊第六位選手的成績;
(2)主持人從A隊所有選手成績中隨機抽取2個,求至少有一個為“晉級”的概率;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若、
是異面直線,則下列命題中的假命題為( 。
A.過直線可以作一個平面并且只可以作一個平面
與直線
平行
B.過直線至多可以作一個平面
與直線
垂直
C.唯一存在一個平面與直線
、
等距
D.可能存在平面與直線
、
都垂直
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com