【題目】如圖,在△ABC中,AB=2,3acosB﹣bcosC=ccosB,點D在線段BC上.
(1)若∠ADC= ,求AD的長;
(2)若BD=2DC,△ACD的面積為 ,求
的值.
【答案】
(1)解:∵3acosB﹣bcosC=ccosB,
∴3sinAcosB=sinCcosB+sinBcosC,3sinAcosB=sin(B+C),
∵B+C=π﹣A,
∴3sinAcosB=sinA,
∵A∈(0,π),
∴sinA>0, .
∵B∈(0,π),
∴ .
∵ ,
∴ ,
在△ABD中,由正弦定理得, ,
∴ ,
.
(2)解:設DC=a,則BD=2a,
∵BD=2DC,△ACD的面積為 ,
∴ ,
∴ ,
∴a=2.…(8分)
∴ ,由正弦定理可得
,
∴ .
,
∴ ,
∵sin∠ADB=sin∠ADC,
∴ .
【解析】(1)由三角形內角和定理,兩角和的正弦函數公式,正弦定理化簡已知等式可得3sinAcosB=sinA,結合sinA>0,可求 ,利用同角三角函數基本關系式可求sinB,進而可求
,由正弦定理即可求得AD的值.(2)設DC=a,則BD=2a,利用已知及三角形面積公式可求a,利用余弦定理可求AC,由正弦定理可得
,結合sin∠ADB=sin∠ADC,即可求值得解.
【考點精析】掌握正弦定理的定義是解答本題的根本,需要知道正弦定理:.
科目:高中數學 來源: 題型:
【題目】如圖,某自行車手從O點出發,沿折線O﹣A﹣B﹣O勻速騎行,其中點A位于點O南偏東45°且與點O相距20 千米.該車手于上午8點整到達點A,8點20分騎至點C,其中點C位于點O南偏東(45°﹣α)(其中sinα=
,0°<α<90°)且與點O相距5
千米(假設所有路面及觀測點都在同一水平面上).
(1)求該自行車手的騎行速度;
(2)若點O正西方向27.5千米處有個氣象觀測站E,假定以點E為中心的3.5千米范圍內有長時間的持續強降雨.試問:該自行車手會不會進入降雨區,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x)與g(x)和區間D,如果存在x0∈D,使|f(x0)﹣g(x0)|≤1,則稱x0是函數f(x)與g(x)在區間D上的“友好點”.現給出兩個函數:
①f(x)=x2 , g(x)=2x﹣2;② ,g(x)=x+2;
③f(x)=e﹣x , ;④f(x)=lnx,g(x)=x.
則在區間(0,+∞)上存在唯一“友好點”的是 . (填上所有正確的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠擬生產甲、乙兩種適銷產品,每件銷售收入分別為3000元,2000元.甲、乙產品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1,2
,加工一件乙設備所需工時分別為2
,1
.A、B兩種設備每月有效使用臺時數分別為400
和500
,分別用
表示計劃每月生產甲,乙產品的件數.
(Ⅰ)用列出滿足生產條件的數學關系式,并畫出相應的平面區域;
(Ⅱ)問分別生產甲、乙兩種產品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,直線
的參數方程為
(
為參數),圓C的參數方程為
(
為參數),以坐標原點O為極點,
軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求直線l和圓C的極坐標方程;
(Ⅱ)設直線l和圓C相交于A,B兩點,求弦AB與其所對劣弧所圍成的圖形面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】手機給人們的生活帶來便利的同時,也給青少年的成長帶來不利的影響,有人沉迷于手機游戲無法自拔,嚴重影響了自己的學業,某學校隨機抽取個班,調查各班帶手機來學校的人數,所得數據的莖葉圖如圖所示.以組距為
將數據分組成
,
,…,
,
時,所作的頻率分布直方圖是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com