【題目】(本題滿分12分)已知橢圓過點
,且離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)為橢圓
的左、右頂點,直線
與
軸交于點
,點
是橢圓
上異于
的動點,直線
分別交直線
于
兩點.證明:
恒為定值.
【答案】(Ⅰ). (Ⅱ)
為定值
.證明見解析。
【解析】本試題主要是考出了橢圓方程的求解,橢圓的幾何性質,直線與橢圓的位置關系的運用的綜合考查,體現了運用代數的方法解決解析幾何的本質的運用。
(1)首先根據題意的幾何性質來表示得到關于a,b,c的關系式,從而得到其橢圓的方程。
(2設出直線方程,設點P的坐標,點斜式得到AP的方程,然后聯立方程組,可知借助于韋達定理表示出長度,進而證明為定值。
(Ⅰ)解:由題意可知,,
,
解得. …………4分
所以橢圓的方程為. …………5分
(Ⅱ)證明:由(Ⅰ)可知,,
.設
,依題意
,
于是直線的方程為
,令
,則
.
即. …………7分
又直線的方程為
,令
,則
,
即. …………9分
…………11分
又在
上,所以
,即
,代入上式,
得,所以
為定值
. …………12分
科目:高中數學 來源: 題型:
【題目】為迎接月
日的“全民健身日”,某大學學生會從全體男生中隨機抽取
名男生參加
米中長跑測試,經測試得到每個男生的跑步所用時間的莖葉圖(小數點前一位數字為莖,小數點的后一位數字為葉),如圖,若跑步時間不高于
秒,則稱為“好體能”.
(Ⅰ) 寫出這組數據的眾數和中位數;
(Ⅱ)要從這 人中隨機選取
人,求至少有
人是“好體能”的概率;
(Ⅲ)以這 人的樣本數據來估計整個學校男生的總體數據,若從該校男生(人數眾多)任取
人,記
表示抽到“好體能”學生的人數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心
在
軸的正半軸上,半徑為2,且被直線
截得的弦長為
.
(1)求圓的方程;
(2)設是直線
上的動點,過點
作圓
的切線
,切點為
,證明:經過
,
,
三點的圓必過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是定義在
上的函數.①若存在
,使
成立,則函數
在
上單調遞增;②若存在
,使
成立,則函數
在
上不可能單調遞減;③若存在
對于任意
都有
成立,則函數
在
上單調遞增.則以上述說法正確的是_________.(填寫序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①若函數滿足
,則函數
的圖象關于直線
對稱;
②點關于直線
的對稱點為
;
③通過回歸方程可以估計和觀測變量的取值和變化趨勢;
④正弦函數是奇函數,是正弦函數,所以
是奇函數,上述推理錯誤的原因是大前提不正確.
其中真命題的序號是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高鐵、網購、移動支付和共享單車被譽為中國的“新四大發明”,彰顯出中國式創新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調查,得到如下數據:
每周移動支付次數 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,由以上數據完成下列2×2列聯表,并判斷能否在犯錯誤的概率不超過0.005的前提下,認為“移動支付活躍用戶”與性別有關?
移動支付活躍用戶 | 非移動支付活躍用戶 | 總計 | |
男 | |||
女 | |||
總計 | 100 |
(2)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶.為了鼓勵男性用戶使用移動支付,對抽出的男“移動支付達人”每人獎勵300元,記獎勵總金額為,求
的分布列及數學期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com