【題目】已知等比數列滿足:
,
.
(1)求數列的通項公式;
(2)是否存在正整數,使得
?若存在,求
的最小值;若不存在,說明理由.
【答案】(1)an=·3n-1,或an=-5·(-1)n-1.
(2)不存在正整數m,使得≥1成立.
【解析】
試題(1)將已知條件轉化為等比數列的首項和公比表示,轉化為關于的方程組,通過解方程組得到
的值,從而得到數列的通項公式;(2)將數列
的通項公式代入
求和,分情況判斷對應的不等式是否成立
試題解析:(1)設等比數列{an}的公比為q,
則由已知可得
解得或
故an=·3n-1,或an=-5·(-1)n-1.
(2)若an=·3n-1,則
=
·(
)n-1.
故{}是首項為
,公比為
的等比數列.
從而.
若an=-5·(-1)n-1,則=-
(-1)n-1.
故{}是首項為-
,公比為-1的等比數列.
從而=
故
<1.
綜上,對任何正整數m,總有<1.
故不存在正整數m,使得≥1成立.
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]
在直角坐標系中,曲線
的方程為
.以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的直角坐標方程;
(2)若與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面上的三點 、
、
.
(1)求以 、
為焦點且過點
的橢圓的標準方程;
(2)設點 、
、
關于直線
的對稱點分別為
、
、
,求以
、
為焦點且過點
的雙曲線的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調區間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知中心在原點,頂點A1、A2在x軸上,其漸近線方程是,雙曲線過點
(1)求雙曲線方程
(2)動直線經過
的重心G,與雙曲線交于不同的兩點M、N,問:是否存在直線
,使G平分線段MN,證明你的結論
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為征求個人所得稅法修改建議,某機構對當地居民的月收入調查了10000人,并根據所得數據畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500)).
(1)求居民月收入在的頻率;
(2)根據頻率分布直方圖估算樣本數據的中位數;
(3)為了分析居民的收入與年齡、職業等方面的關系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進一步分析,則月收入在的這段應抽多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com