【題目】已知函數f(x)=lnx,其中a>0.曲線y=f(x)在點(1,f(1))處的切線與直線y=x+1垂直.
(1)求函數f(x)的單調區間;
(2)求函數f(x)在區間[1,e]上的極值和最值.
【答案】(1)f(x)的單調減區間為(0,2),增區間為[2,+∞);(2)f(x)的極小值為f(2)=ln2,無極大值;最小值ln2,最大值1.
【解析】
(1)先求導,由曲線在點
處的切線與直線
垂直可得
,即可解得
,再分別令
和
,即可求解;
(2)由(1)可知f(x)的極小值為f(2),無極大值,再將極值與端點值比較求得最值即可.
(1)由題,(x>0),
因為曲線在點
處的切線與直線
垂直,
所以,解得a=2,
所以,
令得0<x<2,令
得x>2,
所以f(x)的單調減區間為(0,2),增區間為[2,+∞)
(2)由(1)可得f(x)在(1,2)上遞減,在(2,e)上遞增,
故f(x)的極小值為f(2)=ln2,無極大值;
又因為f(1)=1,f(e),f(2)=ln2,
所以f(x)的最小值為ln2,最大值為1.
科目:高中數學 來源: 題型:
【題目】橢圓(
)的左、右焦點分別為
,
,過
作垂直于
軸的直線
與橢圓
在第一象限交于點
,若
,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ),
是橢圓
上位于直線
兩側的兩點.若直線
過點
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市春節大酬賓,購物滿100元可參加一次抽獎活動,規則如下:顧客將一個半徑適當的小球放入如圖所示的容器正上方的人口處,小球在自由落下的過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,顧客相應獲得袋子里的獎品.已知小球每次遇到黑色障礙物時,向左向右下落的概率都為.若活動當天小明在該超市購物消費108元,按照活動規則,他可參加一次抽獎,則小明獲得A袋中的獎品的概率為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題16分)某鄉鎮為了進行美麗鄉村建設,規劃在長為10千米的河流OC的一側建一條觀光帶,觀光帶的前一部分為曲線段OAB,設曲線段OAB為函數,
(單位:千米)的圖象,且曲線段的頂點為
;觀光帶的后一部分為線段BC,如圖所示.
(1)求曲線段OABC對應的函數的解析式;
(2)若計劃在河流OC和觀光帶OABC之間新建一個如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQ,QP, PN構成,其中點P在線段BC上.當OM長為多少時,綠化帶的總長度最長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正三棱錐,一個正三棱柱的一個底面的三個頂點在正三棱錐的三條側棱上,另一底面在正三棱錐的底面上,若正三棱錐的高為15,底面邊長為12,內接正三棱柱的側面積為120.
(1)求三棱柱的高;
(2)求棱柱的上底面截棱錐所得的小棱錐與原棱錐的側面積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】乒乓球賽規定:一局比賽,雙方比分在10平前,一方連續發球2次后,對方再連續發球2次,依次輪換,每次發球,勝方得1分,負方得0分。設在甲、乙的比賽中,每次發球,甲發球得1分的概率為,乙發球得1分的概率為
,各次發球的勝負結果相互獨立,甲、乙的一局比賽中,甲先發球.則開始第4次發球時,甲、乙的比分為1比2的概率為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過長期觀測得到:在交通繁忙的時段內,某公路汽車的車流量(千輛/h)與汽車的平均速度
之間的函數關系式為:
.
(1)若要求在該段時間內車流量超過2千輛,則汽車在平均速度應在什么范圍內?
(2)在該時段內,若規定汽車平均速度不得超過,當汽車的平均速度
為多少時,車流量最大?最大車流量為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過
的部分按平價收費,超出
的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計
的值,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com