精英家教網 > 高中數學 > 題目詳情
在等比數列{an}中,a1=1,8a2+a5=0,數列{
1
an
}
的前n項和為Sn,則S5=(  )
分析:利用等比數列的通項公式和已知即可得出公比q,再利用等比數列的前n項和公式即可得出.
解答:解:設等比數列{an}的公比為q,0,
∵a1=1,8a2+a5=0,
∴8×1×q+1×q4=0,化為q3=-8,解得q=-2.
an=a1qn-1=(-2)n-1,∴
1
an
=
1
(-2)n-1

∴S5=
1-(-
1
2
)5
1-(-
1
2
)
=
11
16

故選D.
點評:本題考查了等比數列的通項公式、前n項和公式等基礎知識與基本方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在等比數列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求數列{an}的通項公式;
(2)若數列{an}的公比大于1,且bn=log3
an
2
,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

在等比數列{an}中,若a1=1,公比q=2,則a12+a22+…+an2=( 。
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中數學 來源: 題型:

在等比數列{an}中,如果a1+a3=4,a2+a4=8,那么該數列的前8項和為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在等比數列{an}中,an>0且a2=1-a1,a4=9-a3,則a5+a6=
81
81

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视