【題目】如圖,在平面直角坐標系中,橢圓
:
過點
,且橢圓的離心率為
,直線
:
與橢圓
相交于
、
兩點,線段
的中垂線交橢圓
于
、
兩點.
(1)求橢圓的標準方程;
(2)求線段長的最大值;
(3)求的值.
科目:高中數學 來源: 題型:
【題目】為實現國民經濟新“三步走”的發展戰略目標,國家加大了扶貧攻堅的力度,某地區在2015年以前的年均脫貧率(脫貧的戶數占當年貧困戶總數的比)為70%,2015年開始全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加戶數占2019年貧困總戶數的比)及該項目的脫貧率見下表:
實施項目 | 種植業 | 養殖業 | 工廠就業 |
參加占戶比 | 45% | 45% | 10% |
脫貧率 | 96% | 96% | 90% |
那么2019年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的( )倍.
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:(a>b>0)過點E(
,1),其左、右頂點分別為A,B,左、右焦點為F1,F2,其中F1(
,0).
(1)求橢圓C的方程:
(2)設M(x0,y0)為橢圓C上異于A,B兩點的任意一點,MN⊥AB于點N,直線l:x0x+2y0y﹣4=0,設過點A與x軸垂直的直線與直線l交于點P,證明:直線BP經過線段MN的中點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場為迎接“618年中慶典,擬推出促銷活動,活動規則如下:①活動期間凡在商場內購物,每滿673元可參與一次現金紅包抽獎,且互不影響,詳細如下表:
獎項 | 一等獎 | 二等獎 |
獎金 | 200元現金紅包 | 優惠餐券1張(價值50元) |
獲獎率 | 30% | 70% |
②活動期間凡在商場內購物,每滿2019元可參與消費返現,返現金額為實際消費金額的15%.規定每位顧客只可選擇參加其中一種優惠活動.
(1)現有顧客甲在商場消費2019元,若其選擇參與抽獎,求其可以獲得現金紅包的概率.
(2)現有100名消費金額為2019元的顧客正在等待抽獎,假如你是該商場的活動策劃人,你更希望顧客參與哪項優惠活動?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,
,平面
平面
.
(1)求證:平面
;
(2)求證:平面
;
(3)在棱上是否存在一點E,使得二面角
的大小為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,來自“一帶一路”沿線的20國青年評選出了中國的“新四大發明”:高鐵、掃碼支付、共享單車和網購.其中共享單車既響應綠色出行號召,節能減排,保護環境,又方便人們短距離出行,增強靈活性.某城市試投放3個品牌的共享單車分別為紅車、黃車、藍車,三種車的計費標準均為每15分鐘(不足15分鐘按15分鐘計)1元,按每日累計時長結算費用,例如某人某日共使用了24分鐘,系統計時為30分鐘.A同學統計了他1個月(按30天計)每天使用共享單車的時長如莖葉圖所示,不考慮每月自然因素和社會因素的影響,用頻率近似代替概率.設A同學每天消費元.
(1)求的分布列及數學期望;
(2)各品牌為推廣用戶使用,推出APP注冊會員的優惠活動:紅車月功能使用費8元,每天消費打5折;黃車月功能使用費20元,每天前15分鐘免費,之后消費打8折;藍車月功能使用費45元,每月使用22小時之內免費,超出部分按每15分鐘1元計費.設分別為紅車,黃車,藍車的月消費,寫出
與
的函數關系式,參考(1)的結果,A同學下個月選擇其中一個注冊會員,他選哪個費用最低?
(3)該城市計劃3個品牌的共享單車共3000輛正式投入使用,為節約居民開支,隨機調查了100名用戶一周的平均使用時長如下表:
時長 | (0,15] | (15,30] | (30,45] | (45,60] |
人數 | 16 | 45 | 34 | 5 |
在(2)的活動條件下,每個品牌各應該投放多少輛?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的長軸長為
,點
、
、
為橢圓上的三個點,
為橢圓的右端點,
過中心
,且
,
.
(1)求橢圓的標準方程;
(2)設、
是橢圓上位于直線
同側的兩個動點(異于
、
),且滿足
,試討論直線
與直線
斜率之間的關系,并求證直線
的斜率為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com