【題目】函數的部分圖象如圖所示,其中
,
,
.
(Ⅰ)求的解析式;
(Ⅱ)求在區間
上的最大值和最小值;
(Ⅲ)寫出的單調遞增區間.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓
:
,直線
:
,直線
過點
,傾斜角為
,以原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)寫出直線與圓
的交點極坐標及直線
的參數方程;
(2)設直線與圓
交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,
.
(1)若函數在
上是單調函數,求實數
的取值范圍;
(2)當時,是否存在
,使得
和
的圖象在
處的切線互相平行,若存在,請給予證明,若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系(
),點
為曲線
上的動點,點
在線段
的延長線上,且滿足
,點
的軌跡為
。
(Ⅰ)求的極坐標方程;
(Ⅱ)設點的極坐標為
,求
面積的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設點E、F分別為棱AC、AD的中點.
(1)求證:DC⊥平面ABC;
(2)求BF與平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了了解本公司職員的早餐費用情況,抽樣調査了100位職員的早餐日平均費用(單位:元),得到如圖所示的頻率分布直方圖,圖中標注的數字模糊不清.
(1)試根據頻率分布直方圖求的值,并估計該公司職員早餐日平均費用的眾數;
(2) 已知該公司有1000名職員,試估計該公司有多少職員早餐日平均費用多于8元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓離心率為
,點
與橢圓的左、右頂點可以構成等腰直角三角形.點C是橢圓的下頂點,經過橢圓中心O的一條直線與橢圓交于A,B兩個點(不與點C重合),直線CA,CB分別與x軸交于點D,E.
(1)求橢圓的標準方程.
(2)判斷的大小是否為定值,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com