【題目】已知函數是奇函數,且
時,有
,
,則不等式
的解集為____.
【答案】
【解析】
根據條件構造函數g(x)=f(x)﹣x,判斷函數g(x)的奇偶性和單調性,結合函數奇偶性和單調性的性質進行轉化求解即可.
由x﹣3≤f(x)≤x等價為﹣3≤f(x)﹣x≤0
設g(x)=f(x)﹣x,
又由函數f(x)是定義在R上的奇函數,則有f(﹣x)=﹣f(x),
則有g(﹣x)=f(﹣x)﹣(﹣x)=﹣f(x)+x=﹣[f(x)﹣x]=﹣g(x),
即函數g(x)為R上的奇函數,
則有g(0)=0;
又由對任意0≤x1<x2時,有1,
則1,
∵1,
∴1<0,
即g(x)在[0,+∞)上為減函數,
∵g(x)是奇函數,
∴g(x)在(﹣∞,+∞)上為減函數,
∵f(﹣2)=1,∴g(﹣2)=f(﹣2)﹣(﹣2)=1+2=3;
g(2)=﹣3,g(0)=f(0)﹣0=0,
則﹣3≤f(x)﹣x≤0等價為g(2)≤g(x)≤g(0),
∵g(x)是減函數,
∴0≤x≤2,
即不等式x﹣3≤f(x)≤x的解集為[0,2];
故答案為:[0,2].
科目:高中數學 來源: 題型:
【題目】如圖,點為圓
:
上一動點,過點
分別作
軸,
軸的垂線,垂足分別為
,
,連接
延長至點
,使得
,點
的軌跡記為曲線
.
(1)求曲線的方程;
(2)若點,
分別位于
軸與
軸的正半軸上,直線
與曲線
相交于
,
兩點,試問在曲線
上是否存在點
,使得四邊形
為平行四邊形,若存在,求出直線
方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A. “”是“
”成立的充分不必要條件
B. 命題,則
C. 為了了解800名學生對學校某項教改試驗的意見,用系統抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40
D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面坐標系中,曲線
的參數方程為
(
為參數).以坐標原點
為極點,
軸正半軸為極軸建立極坐標系并取相同的單位長度,曲線
的極坐標方程為
.
(1)把曲線的方程化為普通方程,
的方程化為直角坐標方程
(2)若曲線,
相交于
兩點,
的中點為
,過
點作曲線
的垂線交曲線
于
兩點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知半圓:
,
、
分別為半圓
與
軸的左、右交點,直線
過點
且與
軸垂直,點
在直線
上,縱坐標為
,若在半圓
上存在點
使
,則
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中學為研究學生的身體素質與體育鍛煉時間的關系,對該校200名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總人數 | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.
(1)請根據上述表格中的統計數據填寫下面的列聯表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關?
(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出10人,進行體育鍛煉體會交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會交流的10人中,隨機選出2人作重點發言,記這2人中女生的人數為,求
的分布列和數學期望.
參考公式:,其中
.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某開發商用9000萬元在市區購買一塊土地建一幢寫字樓,規劃要求寫字樓每層建筑面積為2000平方米.已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元.
(1)若該寫字樓共x層,總開發費用為y萬元,求函數y=f(x)的表達式;(總開發費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米的平均開發費用最低,該寫字樓應建為多少層?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
與
都為等邊三角形,且側面
與底面
互相垂直,
為
的中點,點
在線段
上,且
,
為棱
上一點.
(1)試確定點的位置,使得
平面
;
(2)在(1)的條件下,求二面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com