精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=x3+ax2+bx+1在x=﹣1與x=2處有極值.
(1)求函數f(x)的解析式;
(2)求f(x)在[﹣2,3]上的最值.

【答案】
(1)解:f′(x)=3x2+2ax+b,

∵函數f(x)=x3+ax2+bx+1在x=﹣1與x=2處有極值,

∴﹣1,2是f′(x)=0的兩個實數根,

,解得

∴f(x)=


(2)解:由(1)可得f′(x)=3x2﹣3x﹣6=3(x﹣2)(x+1).

利用f′(x)=0,解得x=﹣1,2.

列出表格:

x

[﹣2,﹣1)

﹣1

(﹣1,2)

2

(2,3]

f′(x)

+

0

0

+

f(x)

單調遞增

極大值

單調遞減

極小值

單調遞增

由表格可知:當x=﹣1時,函數f(x)取得極大值,f(﹣1)= ;當x=2時,函數f(x)取得極小值,f(2)=﹣9.又f(﹣2)=﹣1,f(3)=﹣

可得:當x=﹣1時,函數f(x)取得最大值 ;當x=2時,函數f(x)取得最小值﹣9


【解析】(1)f′(x)=3x2+2ax+b,由于函數f(x)=x3+ax2+bx+1在x=﹣1與x=2處有極值,可知﹣1,2是f′(x)=0的兩個實數根,代入即可解出;(2)由(1)可得f′(x)=3x2﹣3x﹣6=3(x﹣2)(x+1).利用f′(x)=0,解得x=﹣1,2.列出表格:即可得出極值與區間端點的函數值,經過比較即可得出最值.
【考點精析】本題主要考查了函數的極值與導數和函數的最大(小)值與導數的相關知識點,需要掌握求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值;求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx
(1)求函數f(x)的單調遞減區間;
(2)將函數f(x)的圖象向右平移m個單位,使所得函數為偶函數,求m的最小正值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)求函數的單調區間;

(2)若關于的不等式恒成立,求整數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各式中S的值不可以用算法求解的是(
A.S=1+2+3+4
B.S=1+2+3+4+…
C.S=1+ + +…+
D.S=12+22+32+…+1002

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列四組函數中,表示同一函數的是(
A.f(x)=x0與g(x)=1
B.f(x)=x與g(x)=
C.f(x)=x2﹣1與g(x)=x2+1
D.f(x)=|x|與g(x)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【選修4—4:坐標系與參數方程】

將圓上每一點的橫坐標保持不變,縱坐標變為原來的2倍,得曲線C.

Ⅰ)寫出C的參數方程;

設直線C的交點為,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(Ⅰ)求函數的單調區間;

(Ⅱ)設,其中為函數的導函數.判斷在定義域內是否為單調函數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三個集合U,A,B及元素間的關系如圖所示,則(CUA)∩B=(
A.{5,6}
B.{3,5,6}
C.{3}
D.{0,4,5,6,7,8}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如表提供了某廠節能降耗技術改造后在生產A產品過程中記錄的產量x(噸)與相應的生產能耗y(噸)的幾組對應數據,根據表提供的數據,求出y關于x的線性回歸方程為 =0.7x+0.35,則下列結論錯誤的是(

x

3

4

5

6

y

2.5

t

4

4.5


A.產品的生產能耗與產量呈正相關
B.t的取值必定是3.15
C.回歸直線一定過點(4,5,3,5)
D.A產品每多生產1噸,則相應的生產能耗約增加0.7噸

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视