【題目】為了調查觀眾對某電視劇的喜愛程度,某電視臺在甲乙兩地隨機抽取了8名觀眾做問卷調查,得分結果如圖所示:
(1)計算甲地被抽取的觀眾問卷得分的中位數和乙地被抽取的觀眾問卷得分的平均數;
(2)若從乙地被抽取的8名觀眾中邀請2人參加調研,求參加調研的觀眾中恰有1人的問卷調查成績在90分以上(含90分)的概率.
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,將曲線 (α為參數)上的每一點縱坐標不變,橫坐標變為原來的一半,然后整個圖象向右平移1個單位,最后橫坐標不變,縱坐標變為原來的2倍得到曲線C1 . 以坐標原點為極點,x的非負半軸為極軸,建立的極坐標中的曲線C2的方程為ρ=4sinθ,求C1和C2公共弦的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了在冬季供暖時減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度
(單位:
)滿足關系:
,若不建隔熱層,每年能源消耗費用為8萬元,設
為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及
的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>0,b>0)的離心率為
,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P是橢圓C上一點,直線PA與y軸交于點M,直線PB與x軸交于點N.求證:|AN||BM|為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是等比數列,首項a1=1,公比q>0,其前n項和為Sn,且S1+a1,S3+a3,S2+a2成等差數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{bn}滿足,Tn為數列{bn}的前n項和,若Tn≥m恒成立,求m的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一個圓形波浪實驗水池的中心有三個振動源,假如不計其它因素,在t秒內,它們引發的水面波動可分別由函數 和
描述,如果兩個振動源同時啟動,則水面波動由兩個函數的和表達,在某一時刻使這三個振動源同時開始工作,那么,原本平靜的水面將呈現的狀態是( )
A.仍保持平靜
B.不斷波動
C.周期性保持平靜
D.周期性保持波動
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某生態園將一塊三角形地的一角
開辟為水果園,已知角
為
,
的長度均大于200米,現在邊界
處建圍墻,在
處圍竹籬笆.
(1)若圍墻、
總長度為200米,如何可使得三角形地塊
面積最大?
(2)已知竹籬笆長為米,
段圍墻高1米,
段圍墻高2米,造價均為每平方米100元,求圍墻總造價的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com