【題目】金秋九月,丹桂飄香,某高校迎來了一大批優秀的學生,新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統計數據如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女生 | 40 | 40 |
(1)通過估算,試判斷男、女哪種性別的學生愿意投入到新生接待工作的概率更大.
(2)能否有99%的把握認為,愿意參加新生接待工作與性別有關?
附:,其中
.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
科目:高中數學 來源: 題型:
【題目】已知函數,
、
、
,且
都有
,滿足
的實數
有且只有
個,給出下述四個結論:
①滿足題目條件的實數有且只有
個;②滿足題目條件的實數
有且只有
個;
③在
上單調遞增;④
的取值范圍是
.
其中所有正確結論的編號是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動每一個中國人的心,危難時刻眾志成城,共克時艱,為疫區助力.福建省漳州市東山縣共101個海鮮商家及個人為緩解武漢物質壓力,募捐價值百萬的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國第七大島,介于廈門市和廣東省汕頭之間,東南是著名的閩南漁場和粵東漁場交匯處,因地理位置發展海產品養殖業具有得天獨厚的優勢.根據養殖規模與以往的養殖經驗,某海鮮商家的海產品每只質量(克)在正常環境下服從正態分布.
(1)隨機購買10只該商家的海產品,求至少買到一只質量小于265克該海產品的概率;
(2)2020年該商家考慮增加先進養殖技術投入,該商家欲預測先進養殖技術投入為49千元時的年收益增量.現用以往的先進養殖技術投入(千元)與年收益增量
(千元).
的數據繪制散點圖,由散點圖的樣本點分布,可以認為樣本點集中在曲線
的附近,且
,
,其中
.根據所給的統計量,求y關于x的回歸方程,并預測先進養殖技術投入為49千元時的年收益增量.
附:若隨機變量,則
;
對于一組數據,其回歸線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,
分別為橢圓的左右焦點,點
為橢圓
上的一動點,
面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓
的另一個交點為
,點
,證明:直線
與直線
關于
軸對稱.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的參數方程為
(
為參數),直線
經過點
且傾斜角為
.
(1)求曲線的極坐標方程和直線
的參數方程;
(2)已知直線與曲線
交于
,滿足
為
的中點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在由三棱錐和四棱錐
拼接成的多面體
中,
平面
,平面
平面
,且
是邊長為
的正方形,
是正三角形.
(1)求證:平面
;
(2)若多面體的體積為
,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數).在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,曲線
:
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)設曲線與直線
的交點為
,
,
是曲線
上的動點,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com