設橢圓的左焦點為
,直線
與
軸交于點
,過點
且傾斜角為30°的直線
交橢圓于
兩點.
(Ⅰ)求直線和橢圓的方程;
(Ⅱ)求證:點在以線段
為直徑的圓上;
(Ⅲ)在直線上有兩個不重合的動點
,以
為直徑且過點
的所有圓中,求面積最小的圓的半徑長.
科目:高中數學 來源: 題型:解答題
如圖,點是橢圓
(
)的左焦點,點
,
分別是橢圓的左頂點和上頂點,橢圓的離心率為
,點
在
軸上,且
,過點
作斜率為
的直線
與由三點
,
,
確定的圓
相交于
,
兩點,滿足
.
(1)若的面積為
,求橢圓的方程;
(2)直線的斜率是否為定值?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若OM⊥ON(為坐標原點),求
的值;
(Ⅲ) 設點
關于
軸的對稱點為
(
與
不重合),且直線
與
軸交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線(
且
為常數),
為其焦點.
(1)寫出焦點的坐標;
(2)過點的直線與拋物線相交于
兩點,且
,求直線
的斜率;
(3)若線段是過拋物線焦點
的兩條動弦,且滿足
,如圖所示.求四邊形
面積的最小值
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知:圓過橢圓
的兩焦點,與橢圓有且僅有兩個公共點:直線
與圓
相切 ,與橢圓
相交于A,B兩點記
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)求的面積S的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
過點
,上、下焦點分別為
、
,
向量.直線
與橢圓交于
兩點,線段
中點為
.
(1)求橢圓的方程;
(2)求直線的方程;
(3)記橢圓在直線下方的部分與線段
所圍成的平面區域(含邊界)為
,若曲線
與區域
有公共點,試求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點為
,點
是拋物線上的一點,且其縱坐標為4,
.
(1)求拋物線的方程;
(2)設點是拋物線上的兩點,
的角平分線與
軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點
,求弦
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知、
分別為橢圓
:
的上、下焦點,其中
也是拋物線
:
的焦點,點
是
與
在第二象限的交點,且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(1,3)和圓
:
,過點
的動直線
與圓
相交于不同的兩點
,在線段
取一點
,滿足:
,
(
且
)。
求證:點總在某定直線上。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com