如圖,點是橢圓
(
)的左焦點,點
,
分別是橢圓的左頂點和上頂點,橢圓的離心率為
,點
在
軸上,且
,過點
作斜率為
的直線
與由三點
,
,
確定的圓
相交于
,
兩點,滿足
.
(1)若的面積為
,求橢圓的方程;
(2)直線的斜率是否為定值?證明你的結論.
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點
以及橢圓
的上、下焦點及左、右頂點均在圓
上.
(1)求拋物線和橢圓
的標準方程;
(2)過點的直線交拋物線
于
兩不同點,交
軸于點
,已知
,則
是否為定值?若是,求出其值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的方程為,其離心率為
,經過橢圓焦點且垂直于長軸的弦長為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l:與橢圓C交于A、B兩點,P為橢圓上的點,O為坐標原點,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,曲線y=x-6x+1與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點,且OA⊥OB,若存在,求出該直線方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓與直線
相交于
兩點.
(1)若橢圓的半焦距,直線
與
圍成的矩形
的面積為8,
求橢圓的方程;
(2)若(
為坐標原點),求證:
;
(3)在(2)的條件下,若橢圓的離心率滿足
,求橢圓長軸長的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設F為拋物線E: 的焦點,A、B、C為該拋物線上三點,已知
且
.
(1)求拋物線方程;
(2)設動直線l與拋物線E相切于點P,與直線相交于點Q。證明以PQ為直徑的圓恒過y軸上某定點。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓的左焦點為
,直線
與
軸交于點
,過點
且傾斜角為30°的直線
交橢圓于
兩點.
(Ⅰ)求直線和橢圓的方程;
(Ⅱ)求證:點在以線段
為直徑的圓上;
(Ⅲ)在直線上有兩個不重合的動點
,以
為直徑且過點
的所有圓中,求面積最小的圓的半徑長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com