精英家教網 > 高中數學 > 題目詳情
數列是遞增的等比數列,且b1+b3=5,b1b3=4,
(1)求數列{bn}的通項公式;
(2)若an=log2bn+3,求證:數列{an}是等差數列.
【答案】分析:(1)由b1+b3=5,b1b3=4,且b1<b3可求b1,b3,進而可求公比q,代入等比數列的通項公式即可求解
(2)由an=log2bn+3=n+2,要證明數列{an}是等差數列,只要證明an+1-an=d(d為常數)
解答:解:(1)∵b1+b3=5,b1b3=4,且b1<b3
∴b1=1,b3=4
∴q=2

證明:(2)∵an=log2bn+3=n+2,
∵an+1-an=(n+1)+2-(n+2)=1,
所以數列{an}是以3為首項,1為公差的等差數列.
點評:本題主要考查了等比數列的通項 公式及等差數列的定義在證明等差數列中的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本題滿分12分)數列是遞增的等比數列,且.(Ⅰ)求數列的通項公式;(Ⅱ)若,求證數列是等差數列;(Ⅲ)若……,求的最大值.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省陸豐市高二第三次月考文科數學試卷(解析版) 題型:解答題

(本小題滿分16分)數列是遞增的等比數列,且.

(1)求數列的通項公式;

(2)若,求證數列是等差數列;

(3)若……,求的最大值.

 

查看答案和解析>>

科目:高中數學 來源:2012屆安徽省高三第一學期期中文科數學試卷 題型:解答題

數列是遞增的等比數列,且

(1)求數列的通項公式;

(2)若,求證數列是等差數列;

(3)若,求數列的前項和

 

查看答案和解析>>

科目:高中數學 來源:2013屆廣東省汕頭市高二上學期期末考試理科數學 題型:解答題

、(本小題滿分14 分)已知:數列是遞增的等比數列,且 ,

(1)求數列的通項公式;

(2)若,求證數列是等差數列;

(3)求數列項和為

 

查看答案和解析>>

科目:高中數學 來源:2010年廣東湛江市高二下學期期末考試數學卷 題型:解答題

(本小題滿分14分)

數列是遞增的等比數列,且.

(Ⅰ)求數列的通項公式;

(Ⅱ)若,求證數列是等差數列;

(Ⅲ)若……,求的最大值.

 

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视