【題目】自貢農科所實地考察,研究發現某貧困村適合種植,
兩種藥材,可以通過種植這兩種藥材脫貧.通過大量考察研究得到如下統計數據:藥材
的畝產量約為300公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:
編號 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
單價(元/公斤) | 18 | 20 | 23 | 25 | 29 |
藥材的收購價格始終為20元/公斤,其畝產量的頻率分布直方圖如下:
(1)若藥材的單價
(單位:元/公斤)與年份編號
具有線性相關關系,請求出
關于
的回歸直線方程,并估計2020年藥材
的單價;
(2)用上述頻率分布直方圖估計藥材的平均畝產量,若不考慮其他因素,試判斷2020年該村應種植藥材
還是藥材
?并說明理由.
參考公式:,
(回歸方程
中)
科目:高中數學 來源: 題型:
【題目】已知袋中裝有紅球,黑球共7個,若從中任取兩個小球(每個球被取到的可能性相同),其中恰有一個紅球的概率為.
(1)求袋中紅球的個數;
(2)若袋中紅球比黑球少,從袋中任取三個球,求三個球中恰有一個紅球的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經觀測,某公路段在某時段內的車流量(千輛/小時)與汽車的平均速度
(千米/小時)之間有函數關系:
.
(1)在該時段內,當汽車的平均速度為多少時車流量
最大?最大車流量為多少?(精確到0.01)
(2)為保證在該時段內車流量至少為10千輛/小時,則汽車的平均速度應控制在什么范圍內?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某精準扶貧幫扶單位,為幫助定點扶貧村真正脫貧,堅持扶貧同扶智相結合,幫助精準扶貧戶利用互聯網電商渠道銷售當地特產蘋果.蘋果單果直徑不同單價不同,為了更好的銷售,現從該精準扶貧戶種植的蘋果樹上隨機摘下了50個蘋果測量其直徑,經統計,其單果直徑分布在區間[50,95]內(單位:),統計的莖葉圖如圖所示:
(Ⅰ)從單果直徑落在[72,80)的蘋果中隨機抽取3個,求這3個蘋果單果直徑均小于76的概率;
(Ⅱ)以此莖葉圖中單果直徑出現的頻率代表概率.直徑位于[65,90)內的蘋果稱為優質蘋果,對于該精準扶貧戶的這批蘋果,某電商提出兩種收購方案:
方案:所有蘋果均以5元/千克收購;
方案:從這批蘋果中隨機抽取3個蘋果,若都是優質蘋果,則按6元/干克收購;若有1個非優質蘋果,則按5元/千克收購;若有2個非優質蘋果,則按4.5元/千克收購;若有3個非優質蘋果,則按4元/千克收購.
請你通過計算為該精準扶貧戶推薦收益最好的方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強監管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數據的平均數和中位數;
(3)已知滿意度評分值在內的男生數與女生數3:2,若在滿意度評分值為
的人中隨機抽取2人進行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知梯形中,
,
,
,四邊形
為矩形,
,平面
平面
.
(Ⅰ)求證:平面
;
(Ⅱ)求平面與平面
所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點
,使得直線
與平面
所成角的正弦值為
,若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《九章算術商功》中闡述:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網格紙上小正方形的邊長為1,對該幾何體有如下描述:
①四個側面都是直角三角形;
②最長的側棱長為;
③四個側面中有三個側面是全等的直角三角形;
④外接球的表面積為24π.
其中正確的描述為____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖在四棱錐中,底面
為矩形,
,
,平面
平面
,
為等腰直角三角形,且
,
為底面
的中心.
(1)求異面直線與
所成角的余弦值;
(2)若為
中點,
在棱
上,若
,
,且二面角
的正弦值為
,求實數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com