【題目】如圖,已知梯形中,
,
,
,四邊形
為矩形,
,平面
平面
.
(Ⅰ)求證:平面
;
(Ⅱ)求平面與平面
所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點
,使得直線
與平面
所成角的正弦值為
,若存在,求出線段
的長;若不存在,請說明理由.
【答案】(I)見解析(II)(III)
【解析】試題
(Ⅰ)取為原點,
所在直線為
軸,
所在直線為
軸建立空間直角坐標系,由題意可得平面
的法向量
,且
,據此有
,則
平面
.
(Ⅱ)由題意可得平面的法向量
,結合(Ⅰ)的結論可得
,即平面
與平面
所成銳二面角的余弦值為
.
(Ⅲ)設,
,則
,而平面
的法向量
,據此可得
,解方程有
或
.據此計算可得
.
試題解析:
(Ⅰ)取為原點,
所在直線為
軸,
所在直線為
軸建立空間直角坐標系,如圖,則
,
,
,
,∴
,
,
設平面的法向量
,∴
不妨設
,又
,
∴,∴
,又∵
平面
,∴
平面
.
(Ⅱ)∵,
,設平面
的法向量
,
∴不妨設
,∴
,
∴平面與平面
所成銳二面角的余弦值為
.
(Ⅲ)設
,
,∴
,
∴,又∵平面
的法向量
,
∴,∴
,∴
或
.
當時,
,∴
;當
時,
,∴
.
綜上,.
科目:高中數學 來源: 題型:
【題目】某校在學年期末舉行“我最喜歡的文化課”評選活動,投票規則是一人一票,高一(1)班44名學生和高一(7)班45名學生的投票結果如下表(無廢票):
語文 | 數學 | 外語 | 物理 | 化學 | 生物 | 政治 | 歷史 | 地理 | |
高一(1)班 | 6 | 9 | 7 | 5 | 4 | 5 | 3 | 3 | 2 |
高一(7)班 | 6 | 4 | 5 | 6 | 5 | 2 | 3 |
該校把上表的數據作為樣本,把兩個班同一學科的得票之和定義為該年級該學科的“好感指數”.
(Ⅰ)如果數學學科的“好感指數”比高一年級其他文化課都高,求的所有取值;
(Ⅱ)從高一(1)班投票給政治、歷史、地理的學生中任意選取位同學,設隨機變量
為投票給地理學科的人數,求
的分布列和期望;
(Ⅲ)當為何值時,高一年級的語文、數學、外語三科的“好感指數”的方差最小?(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4―4:坐標系與參數方程]
在直角坐標系xOy中,直線l1的參數方程為(t為參數),直線l2的參數方程為
.設l1與l2的交點為P,當k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3:ρ(cosθ+sinθ) =0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業對現有設備進行了改造,為了了解設備改造后的效果,現從設備改造前后生產的大量產品中各抽取了100件產品作為樣本,檢測其質量指標值,若質量指標值在內,則該產品視為合格品,否則視為不合格品.圖1是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數分布表.
(1)完成列聯表,并判斷是否有99%的把握認為該企業生產的這種產品的質量指標值與設備改造有關:
設備改造前 | 設備改造后 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(2)根據圖1和表1提供的數據,試從產品合格率的角度對改造前后設備的優劣進行比較;
(3)企業將不合格品全部銷毀后,根據客戶需求對合格品進行等級細分,質量指標值落在內的定為一等品,每件售價180元;質量指標值落在
或
內的定為二等品,每件售價150元;其他的合格品定為三等品,每件售價120元.根據頻數分布表1的數據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有合格產品中抽到一件相應等級產品的概率.現有一名顧客隨機購買兩件產品,設其支付的費用為
(單位:元),求
的分布列和數學期望.
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60個組合,稱六十甲子,周而復始,無窮無盡。2019年是“干支紀年法”中的己亥年,那么2026年是“干支紀年法”中的
A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點
,
的坐標分別為
,
.直線
,
相交于點
,且它們的斜率之積是
.記點
的軌跡為
.
(Ⅰ)求的方程.
(Ⅱ)已知直線,
分別交直線
于點
,
,軌跡
在點
處的切線與線段
交于點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某制造商3月生產了一批乒乓球,從中隨機抽樣100個進行檢查,測得每個球的直徑(單位:mm),將數據分組如下:
分組 | 頻數 | 頻率 |
[39.95,39.97) | 10 | |
[39. 97,39.99) | 20 | |
[39.99,40.01) | 50 | |
[40.01,40.03] | 20 | |
合計 | 100 |
(Ⅰ)請在上表中補充完成頻率分布表(結果保留兩位小數),并在圖中畫出頻率分布直方圖;
(Ⅱ)若以上述頻率作為概率,已知標準乒乓球的直徑為40.00 mm,試求這批球的直徑誤差不超過0.03 mm的概率;
(Ⅲ)統計方法中,同一組數據經常用該組區間的中點值(例如區間[39.99,40.01)的中點值是40.00作為代表.據此估計這批乒乓球直徑的平均值(結果保留兩位小數).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com