【題目】學校藝術節對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“或
作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”;
丁說:“作品獲得一等獎”.
若這四位同學只有兩位說的話是對的,則獲得一等獎的作品是( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】在一次珠寶展覽會上,某商家展出一套珠寶首飾,第1件首飾是1顆珠寶,第2件首飾是由6顆珠寶構成的如圖1所示的正六邊形,第3件首飾是由15顆珠寶構成的如圖2所示的正六邊形,第4件首飾是由28顆珠寶構成的如圖3所示的正六邊形,第5件首飾是由45顆珠寶構成的如圖4所示的正六邊形,以后每件首飾都在前一件的基礎上,按照這種規律增加一定數量的珠寶,使它構成更大的正六邊形,依此推斷:
(1)第6件首飾上應有________顆珠寶;
(2)前n(n∈N*)件首飾所用珠寶總顆數為________.(結果用n表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=4x和直線l:x=-1.
(1)若曲線C上存在一點Q,它到l的距離與到坐標原點O的距離相等,求Q點的坐標;
(2)過直線l上任一點P作拋物線的兩條切線,切點記為A,B,求證:直線AB過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點
為極點,
軸的正半軸為極軸,建立極坐標系,已知直線
的參數方程為
(
為參數),曲線
的極坐標方程是
.
(1)寫出直線的普通方程和曲線
的直角坐標方程;
(2)設直線與曲線
相交于
兩點,點
為
的中點,點
的極坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某項競賽分為初賽、復賽、決賽三個階段進行,每個階段選手要回答一個問題.規定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復賽、決賽的概率分別是且各階段通過與否相互獨立.
(1)求該選手在復賽階段被淘汰的概率;
(2)設該選手在競賽中回答問題的個數為ξ,求ξ的分布列與均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1 ,在△ABC中,AB=BC=2, ∠B=90°,D為BC邊上一點,以邊AC為對角線做平行四邊形ADCE,沿AC將△ACE折起,使得平面ACE ⊥平面ABC,如圖2.
(1)在圖 2中,設M為AC的中點,求證:BM丄AE;
(2)在圖2中,當DE最小時,求二面角A -DE-C的平面角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(-2,0),B(2,0),曲線C上的動點P滿足.
(1)求曲線C的方程;
(2)若過定點M(0,-2)的直線l與曲線C有公共點,求直線l的斜率k的取值范圍;
(3)若動點Q(x,y)在曲線C上,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為 (t為參數),若以該直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ-4cos θ=0.
(1)求直線l與曲線C的普通方程;
(2)已知直線l與曲線C交于A,B兩點,設M(2,0),求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com