【題目】經過長期觀測得到:在交通繁忙的時段,某公路段的車流量(千輛/小時)與汽車的平均速度
(千米/小時)之間的函數關系為:
.
(1)在該時段內,當汽車的平均速度為多少時,車流量最大?最大車流量為多少?
(2)若要求在該時段內車流量超過10千輛/小時,則汽車的平均速度應在什么范圍?
科目:高中數學 來源: 題型:
【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+與雙曲線C2恒有兩個不同的交點A和B,且
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線:
,若存在實數
使得一條曲線與直線
有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于
,則稱此曲線為直線
的“絕對曲線”.下面給出的四條曲線方程:
①;②
;③
;④
.
其中直線的“絕對曲線”的條數為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:,點
在x軸的正半軸上,過點M的直線l與拋線C相交于A、B兩點,O為坐標原點.
若
,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準線相切;
是否存在定點M,使得不論直線l繞點M如何轉動,
恒為定值?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在極坐標系中,曲線的極坐標方程是
,以極點為原點
,極軸為
軸正半軸(兩坐標系取相同的單位長度)的直角坐標系
中,曲線
的參數方程為:
(
為參數).
(1)求曲線的直角坐標方程與曲線
的普通方程;
(2)將曲線經過伸縮變換
后得到曲線
,若
,
分別是曲線
和曲線
上的動點,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓和拋物線
,圓
與拋物線
的準線交于
、
兩點,
的面積為
,其中
是
的焦點.
(1)求拋物線的方程;
(2)不過原點的動直線
交該拋物線于
,
兩點,且滿足
,設點
為圓
上任意一動點,求當動點
到直線
的距離最大時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在邊長為2的正方形中,
分別為
的中點,
為
的中點,沿
將正方形折起,使
重合于點
,在構成的四面體
中,下列結論錯誤的是
A. 平面
B. 直線與平面
所成角的正切值為
C. 四面體的內切球表面積為
D. 異面直線和
所成角的余弦值為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若=λ
+μ
,則λ+μ的最大值為( )
A. 3 B. 2
C. D. 2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com