已知橢圓的離心率為
,且過點(
),
(1)求橢圓的方程;
(2)設直線與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.
科目:高中數學 來源: 題型:解答題
已知動點到
的距離比它到
軸的距離多一個單位.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)過點作曲線
的切線
,求切線
的方程,并求出
與曲線
及
軸所圍成圖形的面積
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
已知拋物線C:y2=2px(p>0)的焦點F和橢圓的右焦點重合,直線
過點F交拋物線于A、B兩點.
(1)求拋物線C的方程;
(2)若直線交y軸于點M,且
,m、n是實數,對于直線
,m+n是否為定值?若是,求出m+n的值,否則,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍,且經過點
(2,1),平行于
直線
在
軸上的截距為
,設直線
交橢圓于兩個不同點
、
,
(1)求橢圓方程;
(2)求證:對任意的的允許值,
的內心在定直線
。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)橢圓:
的左、右焦點分別為
,焦距為2,,過
作垂直于橢圓長軸的弦長
為3.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過的直線l交橢圓于
兩點.并判斷是否存在直線l使得
的夾角為鈍角,若存在,求出l的斜率k的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)已知拋物線上一動點
,拋物線內一點
,
為焦點且
的最小值為
。
求拋物線方程以及使得|PA|+|PF|最小時的P點坐標;
過(1)中的P點作兩條互相垂直的直線與拋物線分別交于C、D兩點,直線CD是否過一定點? 若是,求出該定點坐標; 若不是,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com