(本題滿分12分)
已知拋物線C:y2=2px(p>0)的焦點F和橢圓的右焦點重合,直線
過點F交拋物線于A、B兩點.
(1)求拋物線C的方程;
(2)若直線交y軸于點M,且
,m、n是實數,對于直線
,m+n是否為定值?若是,求出m+n的值,否則,說明理由.
科目:高中數學 來源: 題型:解答題
已知、
分別是橢圓
的左、右焦點。
(1)若是第一象限內該橢圓上的一點,
,求點P的坐標;
(2)設過定點M(0,2)的直線與橢圓交于不同的兩點A、B,且
為銳角(其中
為坐標原點),求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,它的準線經過雙曲線
:
的一個焦點
且垂直于
的兩個焦點所在的軸,若拋物線
與雙曲線
的一個交點是
.
(1)求拋物線的方程及其焦點
的坐標;
(2)求雙曲線的方程及其離心率
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經過點,它們在
軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這三條曲線的方程;
(2)對于拋物線上任意一點,點
都滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個焦點為
,點
在橢圓
上,點
滿足
(其中
為坐標原點),過點
作一直線交橢圓于
、
兩點 .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設點為點
關于
軸的對稱點,判斷
與
的位置關系,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,且過點(
),
(1)求橢圓的方程;
(2)設直線與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面內一動點P到F(1,0)的距離比點P到軸的距離少1.
(1)求動點P的軌跡C的方程;
(2)過點F的直線交軌跡C于A,B兩點,交直線于
點,且
,
,
求的值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com