【題目】已知,
為橢圓
的左、右頂點,
為其右焦點,
是橢圓
上異于
,
的動點,且
面積的最大值為
.
(1)求橢圓的方程及離心率;
(2)直線與橢圓在點
處的切線交于點
,當點
在橢圓上運動時,求證:以
為直徑的圓與直線
恒相切.
【答案】(1),
;(2)證明見解析
【解析】
(1)根據條件和橢圓的性質,可列方程組,解出
,即得;(2)設直線
的方程為
,由直線方程和橢圓方程聯立,求出點
的坐標,再根據題意求出以
為直徑的圓,判斷該圓是否與直線
恒相切.
(1)由題意可設橢圓的方程為
,
.
由題意知,解得
,
.
故橢圓的方程為
,離心率為
.
(2)證明:由題意可設直線的方程為
.
則點坐標為
,
中點
的坐標為
.
由得
.
設點的坐標為
,則
.
所以,
.
因為點坐標為
,
當時,點
的坐標為
,直線
軸,點
的坐標為
.
此時以為直徑的圓
與直線
相切.
當時,則直線
的斜率
.
所以直線的方程為
.
點到直線
的距離
.
又因為,所以
.
故以為直徑的圓與直線
相切.
綜上得,當點在橢圓上運動時,以
為直徑的圓與直線
恒相切.
科目:高中數學 來源: 題型:
【題目】如圖,設拋物線與拋物線
在第一象限的交點為
,點A,B分別在拋物線
,
上,
,
分別與
,
相切.
(1)當點M的縱坐標為4時,求拋物線的方程;
(2)若,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:極坐標與參數方程]
在直角坐標系中,曲線
的參數方程為
(
是參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程和曲線
的直角坐標方程;
(2)若射線
與曲線
交于
,
兩點,與曲線
交于
,
兩點,求
取最大值時
的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某有機水果種植基地試驗種植的某水果在售賣前要成箱包裝,每箱80個,每一箱水果在交付顧客之前要按約定標準對水果作檢測,如檢測出不合格品,則更換為合格品.檢測時,先從這一箱水果中任取10個作檢測,再根據檢測結果決定是否對余下的所有水果作檢測.設每個水果為不合格品的概率都為,且各個水果是否為不合格品相互獨立.
(Ⅰ)記10個水果中恰有2個不合格品的概率為,求
取最大值時p的值
;
(Ⅱ)現對一箱水果檢驗了10個,結果恰有2個不合格,以(Ⅰ)中確定的作為p的值.已知每個水果的檢測費用為1.5元,若有不合格水果進入顧客手中,則種植基地要對每個不合格水果支付a元的賠償費用
.
(ⅰ)若不對該箱余下的水果作檢驗,這一箱水果的檢驗費用與賠償費用的和記為X,求EX;
(ⅱ)以檢驗費用與賠償費用和的期望值為決策依據,當種植基地要對每個不合格水果支付的賠償費用至少為多少元時,將促使種植基地對這箱余下的所有水果作檢驗?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某物流公司專營從甲地到乙地的貨運業務(貨物全部用統一規格的包裝箱包裝),現統計了最近100天內每天可配送的貨物量,按照可配送貨物量T(單位:箱)分成了以下幾組:,
,
,
,
,
,并繪制了如圖所示的頻率分布直方圖(同一組數據用該組數據的區間中點值作代表,將頻率視為概率).
(1)該物流公司負責人決定用分層抽樣的方法從前3組中隨機抽出11天的數據來分析可配送貨物量少的原因,并從這11天的數據中再抽出3天的數據進行財務分析,求這3天的數據中至少有2天的數據來自這一組的概率.
(2)由頻率分布直方圖可以認為,該物流公司每日的可配送貨物量T(單位:箱)服從正態分布,其中
近似為樣本平均數.
(。┰嚴迷撜龖B分布,估計該物流公司2000天內日貨物配送量在區間內的天數(結果保留整數).
(ⅱ)該物流公司負責人根據每日的可配送貨物量為公司裝卸貨物的員工制定了兩種不同的工作獎勵方案.
方案一:直接發放獎金,按每日的可配送貨物量劃分為以下三級:時,獎勵50元;
,獎勵80元;
時,獎勵120元.
方案二:利用抽獎的方式獲得獎金,其中每日的可配送貨物量不低于時有兩次抽獎機會,每日的可配送貨物量低于
時只有一次抽獎機會,每次抽獎的獎金及對應的概率分別為
獎金 | 50 | 100 |
概率 |
小張恰好為該公司裝卸貨物的一名員工,試從數學期望的角度分析,小張選擇哪種獎勵方案對他更有利?
附:若,則
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為配合“2019雙十二”促銷活動,某公司的四個商品派送點如圖環形分布,并且公司給四個派送點準備某種商品各50個.根據平臺數據中心統計發現,需要將發送給
四個派送點的商品數調整為40,45,54,61,但調整只能在相鄰派送點進行,每次調動可以調整1件商品.為完成調整,則( )
A.最少需要16次調動,有2種可行方案
B.最少需要15次調動,有1種可行方案
C.最少需要16次調動,有1種可行方案
D.最少需要15次調動,有2種可行方案
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com