精英家教網 > 高中數學 > 題目詳情

【題目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函數f(x)= cos2x
(1)求函數f(x)的解析式及其單調遞增區間;
(2)當x∈[0, ]時,求函數f(x)的值域.

【答案】
(1)解:函數f(x)= cos2x

=cos2xcos ﹣sin2xsin

= ,

由2k ,

可得k ,

單調遞增區間為:[k ];


(2)解:當x∈[0, ]時,

可得2 ,

因此sin(2x+

所以函數f(x)的值域是[


【解析】(1)首先根據 =(1,sinx), =(cos(2x+ ),sinx),求出 ;然后根據函數f(x)= cos2x,求出函數f(x)的解析式;最后根據正弦函數的特征,求出其單調遞增區間即可;(2)當x∈[0, ]時,可得2x ,然后求出函數f(x)的值域即可.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知在等比數列{an}中,a1=1,且a2是a1和a3﹣1的等差中項.
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足bn=2n﹣1+an(n∈N*),求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知平面QBC與直線PA均垂直于Rt△ABC所在平面,且PA=AB=AC.

(1)求證:PA∥平面QBC;
(2)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如表資料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

溫差x(℃)

8

11

12

13

10

發芽數y(顆)

16

25

26

30

23

設農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(注:
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是11月1日與11月5日的兩組數據,請根據11月2日至11月4日的數據,求出y關于x的線性回歸方程 ;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)的定義域為{x|x∈R,且x≠2},且y=f(x+2)是偶函數,當x<2時,f(x)=|2x﹣1|,那么當x>2時,函數f(x)的遞減區間是(
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形是邊長為的正方形,平面平面, ,

(Ⅰ)求證: 平面;

)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數,關于的不等式的解集為其中

(1)求的值;

(2)令,若函數存在極值點,求實數的取值范圍,并求出極值點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求曲線y=x2﹣2x+3與直線y=x+3圍成的圖形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,則導函數f′(x)是(
A.僅有最小值的奇函數
B.既有最大值,又有最小值的偶函數
C.僅有最大值的偶函數
D.既有最大值,又有最小值的奇函數

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视