【題目】有一個同學家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數的影響,從一季度中隨機選取5天,統計出氣溫與熱奶茶銷售杯數,如表:
氣溫 | 0 | 4 | 12 | 19 | 27 |
熱奶茶銷售杯數 | 150 | 132 | 130 | 104 | 94 |
(Ⅰ)求熱奶茶銷售杯數關于氣溫的線性回歸方程(
精確到0.1),若某天的氣溫為
,預測這天熱奶茶的銷售杯數;
(Ⅱ)從表中的5天中任取兩天,求所選取兩天中至少有一天熱奶茶銷售杯數大于130的概率.
參考數據:,
.
參考公式:,
.
【答案】(1) ﹣2.0x+146.8,預測氣溫為15oC,熱奶茶銷售約117杯;(2)
.
【解析】
(1)由表格中數據計算、
,求出回歸系數,再寫出回歸方程,
利用回歸方程求得對應的值;
(2)利用列舉法求出基本事件數,再計算所求的概率值.
(1)由表格中數據可得,
=
×(0+4+12+19+27)=12.4,
=
×(150+132+130+104+94)=122;
∴=
=
≈﹣2.0,
=
=122﹣(﹣2.0)×12.4=146.8;
∴熱奶茶銷售杯數關于氣溫的線性回歸方程為
=﹣2.0x+146.8;
當x=15時, =﹣2.0×15+146.8=116.8≈117,
即預測氣溫為15oC,這天熱奶茶銷售約117杯;
(2)記表中的第1天到第5天為A、B、c、d、e,其中銷售杯數大于130的有A、B,
任取兩天有AB,Ac,Ad,Ae,Bc,Bd,Be,cd,ce,de共10種情況;
其中至少有一天銷售杯數大于130有AB,Ac,Ad,Ae,Bc,Be共7種情況;
∴所選取兩天中至少有一天熱奶茶銷售杯數大于130的概率為P=.
科目:高中數學 來源: 題型:
【題目】已知橢圓的方程為
,則其長軸長為__________;若
為
的右焦點,
為
的上頂點,
為
上位于第一象限內的動點,則四邊形
的面積的最大值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐,側棱
,底面三角形
為正三角形,邊長為
,頂點
在平面
上的射影為
,有
,且
.
(Ⅰ)求證: 平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點
使得
⊥平面
,如果存在,求
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形四點坐標為A(0,-2),C(4,2),B(4,-2),D(0,2).
(1)求對角線所在直線的方程;
(2)求矩形外接圓的方程;
(3)若動點為外接圓上一點,點
為定點,問線段PN中點的軌跡是什么,并求出該軌跡方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的準線與x軸交于點K,過點K作圓(x﹣5)2+y2=9的兩條切線,切點為M,N,|MN|=3
(1)求拋物線E的方程;
(2)設A,B是拋物線E上分別位于x軸兩側的兩個動點,且 (其中O為坐標原點).
①求證:直線AB必過定點,并求出該定點Q的坐標;
②過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= (a>b>0)的圖象是曲線C.
(1)在如圖的坐標系中分別做出曲線C的示意圖,并分別標出曲線C與x軸的左、右交點A1 , A2 .
(2)設P是曲線C上位于第一象限的任意一點,過A2作A2R⊥A1P于R,設A2R與曲線C交于Q,求直線PQ斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:等比數列{}中,公比為q,且a1=2,a4=54,等差數列{
}中,公差為d,b1=2,b1+b2+b3+b4=a1+ a2+ a3.
(I)求數列{}的通項公式;
(II)求數列{}的前n項和
的公式;
(III)設,
,其中n=1,2,…,試比較
與
的大小,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足b1=1,且bn+1=bn+an , 求數列{bn}的通項公式;
(3)設cn= ,數列{cn}的前n項和為Tn=
.求n.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com