(10分)設函數.
⑴ 求的極值點;
⑵ 若關于的方程
有3個不同實根,求實數a的取值范圍.
⑶ 已知當恒成立,求實數k的取值范圍.
科目:高中數學 來源:2013-2014學年浙江省高三上學期期中考試理科數學試卷(解析版) 題型:解答題
已知實數滿足
,
,設函數
(1)當時,求
的極小值;
(2)若函數(
)的極小值點與
的極小值點相同,求證:
的極大值小于等于
查看答案和解析>>
科目:高中數學 來源:2013-2014學年江蘇省高三第一學期期中考試文科數學試卷(解析版) 題型:解答題
設函數,
.
(Ⅰ)若,求
的極小值;
(Ⅱ)在(Ⅰ)的結論下,是否存在實常數和
,使得
和
?若存在,求出
和
的值.若不存在,說明理由.
(Ⅲ)設有兩個零點
,且
成等差數列,試探究
值的符號.
查看答案和解析>>
科目:高中數學 來源:2010-2011學年四川省成都市高三第一次模擬文科數學卷 題型:解答題
已知函數f(x)=。
(I)若f(x)=。
①求曲線y=f(x)上的點P(1,f(1))為切點的切線的斜率;
②若函數f(x)在x=x1處取得極大值,在x=x2處取得極小值,且點(x1,f(x1))在第二象限,點(x2,f(x2))位于y軸負半軸上,求m的取值范圍;
(II)當an=時,設函數f(x)的導函數為
,令Tn=
,證明:Tn
1
查看答案和解析>>
科目:高中數學 來源:2012屆湖北省高二第二學期期中考試理科數學卷 題型:解答題
已知定義在實數集上的函數,
,其導函數記為
,且滿足:
,
為常數.
(Ⅰ)試求的值;
(Ⅱ)設函數與
的乘積為函數
,求
的極大值與極小值;
(Ⅲ)試討論關于的方程
在區間
上的實數根的個數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com