【題目】如圖,在圓心角為直角的扇形OAB中,分別以OA,OB為直徑作兩個半圓,在扇形OAB內隨機取一點,則此點取自陰影部分的概率是 .
【答案】﹣
【解析】解:如圖,設兩個半圓的交點為C,且以AO為直徑的半圓以D為圓心,連結OC、CD
設OA=OB=2,則弓形OMC的面積為
S弓形OMC=S扇形OCD﹣SRt△DCO= π12﹣
×1×1=
﹣
可得空白部分面積為S空白=2S半圓AO﹣2S弓形OMC=2× π12﹣(
﹣1)=
+1,
因此,兩塊陰影部分面積之和為S陰影=S扇形OAB﹣S空白= π22﹣(
+1)=
﹣1
可得在扇形OAB內隨機取一點,此點取自陰影部分的概率為P= =
=
﹣
,
所以答案是: ﹣
【考點精析】利用幾何概型對題目進行判斷即可得到答案,需要熟知幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等.
科目:高中數學 來源: 題型:
【題目】設直線系M:xcosθ+ysinθ=1,對于下列四個命題:
①不在直線系M中的點都落在面積為π的區域內
②直線系M中所有直線為一組平行線
③直線系M中所有直線均經過一個定點
④對于任意整數n(n≥3),存在正n邊形,其所有邊均在直線系M中的直線上
其中真命題的代號是(寫出所有真命題的代號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面有五個命題:
①函數y=sin4x﹣cos4x的最小正周期是π;
② =tanα;
③函數y=sinx+cosx的圖象均關于點( ,0)成中心對稱;
④把函數y=3sin(2x+ )的圖象向右平移
個單位得到y=3sin2x的圖象.
其中正確命題的編號是 . (寫出所有正確命題的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若將其圖象向右平移
個單位后得到的圖象關于原點對稱,則函數f(x)的圖象( )
A.關于直線x= 對稱
B.關于直線x= 對稱
C.關于點( ,0)對稱
D.關于點( ,0)對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若a、b、c是常數,則“a>0且b2﹣4ac<0”是“對任意x∈R,有ax2+bx+c>0”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分16分)數列,
,
滿足:
,
,
.
(1)若數列是等差數列,求證:數列
是等差數列;
(2)若數列,
都是等差數列,求證:數列
從第二項起為等差數列;
(3)若數列是等差數列,試判斷當
時,數列
是否成等差數列?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,已知角A、B、C所對的邊分別為a、b、c,且a2+b2﹣c2= ab.
(1)求角C的大小;
(2)如果0<A≤ ,m=2cos2
﹣sinB﹣1,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(x+ ﹣2)(a>0) (Ⅰ)當1<a<4時,函數f(x)在[2,4]上的最小值為ln
,求a;
(Ⅱ)若存在x0∈(2,+∞),使得f(x0)<0,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①存在實數x,使sinx+cosx= ;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數y=sin( x+
)是偶函數;
④函數y=sin2x的圖象向左平移 個單位,得到函數y=cos2x的圖象.
其中正確命題的序號是(把正確命題的序號都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com