精英家教網 > 高中數學 > 題目詳情

【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設點

1)求該橢圓的標準方程;

2)若是橢圓上的動點,求線段中點的軌跡方程;

【答案】12

【解析】試題分析:(1)由左焦點為,右頂點為D2,0),得到橢圓的半長軸a,半焦距c,再求得半短軸b,最后由橢圓的焦點在x軸上求得方程;(2)首先設所求點為Mx,y),借助于中點性質得到P點坐標用x,y表示,將P點代入橢圓方程從而得到中點的軌跡方程

試題解析:(1)由已知得橢圓的半長軸a=2,半焦距c=,則半短軸b=1

又橢圓的焦點在x軸上, ∴橢圓的標準方程為

2)設線段PA的中點為Mx,y,P的坐標是(x0,y0,

由點P在橢圓上,,

線段PA中點M的軌跡方程是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,左、右焦點分別為F1,F2,且|F1F2|=2,點1, 在橢圓C。

1求橢圓C的方程;

2F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知P點到兩定點D(﹣2,0),E(2,0)連線斜率之積為-
(1)求證:動點P恒在一個定橢圓C上運動;
(2)過 的直線交橢圓C于A,B兩點,過O的直線交橢圓C于M,N兩點,若直線AB與直線MN斜率之和為零,求證:直線AM與直線BN斜率之和為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數 處的切線方程;

(2)設 ,討論函數 的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,,

(1)求證:;

(2)試在線段上找一點,使平面,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養殖法的箱產量低于50 kg”,估計A的概率;

(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:

箱產量<50 kg

箱產量≥50 kg

舊養殖法

新養殖法

(3)根據箱產量的頻率分布直方圖,對這兩種養殖方法的優劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設有關于x的一元二次方程x2+2ax+b2=0.

(1)a是從0,1,2,3四個數中任取的一個數,b是從0,1,2三個數中任取的一個數,求上述方程有實根的概率.

(2)a是從區間[0,3]任取的一個數,b是從區間[0,2]任取的一個數,求上述方程有實根的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC為等邊三角形,AE=1,BD=2,CD與平面ABCDE所成角的正弦值為

(1)若F是線段CD的中點,證明:EF⊥平面DBC;
(2)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是奇函數,

(1)求實數m的值;

(2)判斷函數的單調性并用定義法加以證明;

(3)若函數上的最小值為,求實數a的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视