【題目】拋物線,
,
為拋物線的焦點,
是拋物線上兩點,線段
的中垂線交
軸于
,
,
。
(Ⅰ)證明:是
的等差中項;
(Ⅱ)若,
為平行于
軸的直線,其被以AD為直徑的圓所截得的弦長為定值,求直線
的方程.
科目:高中數學 來源: 題型:
【題目】二進制規定:每個二進制數由若干個0、1組成,且最高位數字必須為1.若在二進制中,是所有
位二進制數構成的集合,對于
,
,
表示
和
對應位置上數字不同的位置個數.例如當
,
時
,當
,
時
.
(1)令,求所有滿足
,且
的
的個數;
(2)給定,對于集合
中的所有
,求
的和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與橢圓
相交于
兩點,與
軸,
軸分別相交于點
和點
,且
,點
是點
關于
軸的對稱點,
的延長線交橢圓于點
,過點
分別做
軸的垂線,垂足分別為
.
(1) 若橢圓的左、右焦點與其短軸的一個端點是正三角形的三個頂點,點
在橢圓
上,求橢圓
的方程;
(2)當時,若點
平分線段
,求橢圓
的離心率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線a與平面所成角的為30o,直線b在平面
內,且與b異面,若直線a與直線b所成的角為
,則( )
A. 0<≤30 B. 0<
≤90 C. 30≤
≤90 D. 30≤
≤180
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左焦點為
,上頂點為
,長軸長為
,
為直線
:
上的動點,
,
.當
時,
與
重合.
(1)若橢圓的方程;
(2)若直線交橢圓
于
,
兩點,若
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的傾斜角;
(2)設點,直線
和曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【選修4-4:坐標系與參數方程】
在直角坐標系中,以原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的參數方程為
(
為參數),曲線
的極坐標方程為
.
(1)寫出直線的普通方程和曲線
的直角坐標方程;
(2)若點的坐標為
,直線
與曲線
交于
,
兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com