【題目】直線a與平面所成角的為30o,直線b在平面
內,且與b異面,若直線a與直線b所成的角為
,則( )
A. 0<≤30 B. 0<
≤90 C. 30≤
≤90 D. 30≤
≤180
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,若橢圓
:
,則稱橢圓
與橢圓
“相似”.
(1)求經過點,且與橢圓
:
“相似”的橢圓
的方程;
(2)若,橢圓
的離心率為
,
在橢圓
上,過
的直線
交橢圓
于
,
兩點,且
.
①若的坐標為
,且
,求直線
的方程;
②若直線,
的斜率之積為
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,已知直角梯形ABCD中,,AB//DC,AB⊥AD,E為CD的中點,沿AE把△DAE折起到△PAE的位置(D折后變為P),使得PB=2,如圖2.
(Ⅰ)求證:平面PAE⊥平面ABCE;
(Ⅱ)求點B到平面PCE的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數).在極坐標系(與平面直角坐標系
取相同的長度單位,且以原點
為極點,以
軸非負半軸為極軸)中,直線
的方程為
.
(1)求曲線的普通方程及直線
的直角坐標方程;
(2)設是曲線
上的任意一點,求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線,
,
為拋物線的焦點,
是拋物線上兩點,線段
的中垂線交
軸于
,
,
。
(Ⅰ)證明:是
的等差中項;
(Ⅱ)若,
為平行于
軸的直線,其被以AD為直徑的圓所截得的弦長為定值,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓
:
,圓
:
.以坐標原點為極點,
軸的正半軸為極軸建立極坐標系.
(1)求,
的極坐標方程;
(2)設曲線:
(
為參數且
),
與圓
,
分別交于
,
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱中,
且
,
是棱
上的動點,
是
的中點.
(1)當是
中點時,求證:
平面
;
(2)在棱上是否存在點
,使得平面
與平面
所成銳二面角為
,若存在,求
的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩種產品的質量,從中分別隨機抽取了10件樣品,測量產品中某種元素的含量(單位:毫克),如圖所示是測量數據的莖葉圖.規定:當產品中的此中元素的含量不小于18毫克時,該產品為優等品.
(1)試用樣品數據估計甲、乙兩種產品的優等品率;
(2)從乙產品抽取的10件樣品中隨機抽取3件,求抽到的3件樣品中優等品數的分布列及其數學期望
;
(3)從甲產品抽取的10件樣品中有放回地隨機抽取3件,也從乙產品抽取的10件樣品中有放回地隨機抽取3件;抽到的優等品中,記“甲產品恰比乙產品多2件”為事件,求事件
的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com