【題目】已知橢圓的中心在坐標原點,焦點在
軸上,橢圓
上的點到焦點距離的最大值為3,最小值為1.
(1)求橢圓的標準方程;
(2)若直線:
與橢圓
相交于
,
兩點(
,
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點.求證:直線
過定點,并求出該定點的坐標.
【答案】(1) ;(2)證明見解析,定點坐標為
.
【解析】試題分析:(1)根據橢圓的幾何意義,知,
;(2)聯立方程
,得到根與系數的關系,以AB為直徑的圓過橢圓C的右頂點D,所以
,
試題解析:(ⅰ)由題意設橢圓的標準方程為,
由已知得:a+c=3,a-c=1,
∴a=2,c=1,
∴b2=a2-c2=3,
∴橢圓的標準方程為。
(ⅱ)設A(x1,y1),B(x2,y2),
聯立,得(3+4k2)x2+8mkx+4(m2-3)=0,
則,
又y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2,
因為以AB為直徑的圓過橢圓的右頂點D(2,0),
∴
整理為,得
,
,或
,代入
后,得到
過
,或是
過
科目:高中數學 來源: 題型:
【題目】某地級市共有中學生,其中有
學生在
年享受了“國家精準扶貧”政策,在享受“國家精準扶貧”政策的學生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數之比為
,為進一步幫助這些學生,當地市政府設立“專項教育基金”,對這三個等次的困難學生每年每人分別補助
元、
元、
元.經濟學家調查發現,當地人均可支配年收入較上一年每增加
,一般困難的學生中有
會脫貧,脫貧后將不再享受“精準扶貧”政策,很困難的學生有
轉為一般困難學生,特別困難的學生中有
轉為很困難學生.現統計了該地級市
年到
年共
年的人均可支配年收入,對數據初步處理后得到了如圖所示的散點圖和表中統計量的值,其中年份
取
時代表
年,
取
時代表
年,……依此類推,且
與
(單位:萬元)近似滿足關系式
.(
年至
年該市中學生人數大致保持不變)
(1)估計該市年人均可支配年收入為多少萬元?
(2)試問該市年的“專項教育基金”的財政預算大約為多少萬元?
附:對于一組具有線性相關關系的數據,
,…,
,其回歸直線方程
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣e﹣x , 下列命題正確的有 . (寫出所有正確命題的編號)
①f(x)是奇函數;
②f(x)在R上是單調遞增函數;
③方程f(x)=x2+2x有且僅有1個實數根;
④如果對任意x∈(0,+∞),都有f(x)>kx,那么k的最大值為2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=2 cos2x﹣2sinxcosx﹣
的圖象向左平移t(t>0)個單位,所得圖象對應的函數為奇函數,則t的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的上下兩個焦點分別為
,
,過點
與
軸垂直的直線交橢圓
于
、
兩點,
的面積為
,橢圓
的離心力為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知為坐標原點,直線
:
與
軸交于點
,與橢圓
交于
,
兩個不同的點,若存在實數
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正三棱錐A﹣BCD的外接球半徑R= ,P,Q分別是AB,BC上的點,且滿足
=
=5,DP⊥PQ,則該正三棱錐的高為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發芽多少之間的關系,現在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發芽數,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發芽數y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發芽的種子數分別為,求事件“
均不小于25”的概率;
(2) 若由線性回歸方程得到的估計數據與4月份所選5天的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的. 請根據4月7日,4月15日與4月21日這三天的數據,求出關于
的線性回歸方程
,并判定所得的線性回歸方程是否可靠?
參考公式: ,
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的一個焦點與拋物線
的焦點相同,
為橢圓的左、右焦點.
為橢圓上任意一點,
面積的最大值為1.
(1)求橢圓的方程;
(2)直線交橢圓
于
兩點.若直線
與
的斜率分別為
,且
.求證:直線
過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)滿足:(1)f(x)+f(2﹣x)=0,(2)f(x﹣2)=f(﹣x),(3)在[﹣1,1]上表達式為f(x)= ,則函數f(x)與函數g(x)=
的圖象區間[﹣3,3]上的交點個數為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com