【題目】若函數在
上單調遞增,則
的取值范圍是( )
A. B.
C.
D.
【答案】A
【解析】函數f(x)=x﹣sin2x+asinx的導數為f′(x)=1﹣
cos2x+acosx,
由題意可得f′(x)≥0恒成立,
即為1﹣cos2x+acosx≥0,
即有﹣
cos2x+acosx≥0,
設t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,
當t=0時,不等式顯然成立;
當0<t≤1時,3a≥4t﹣,
由4t﹣在(0,1]遞增,可得t=1時,取得最大值﹣1,
可得3a≥﹣1,即a≥﹣;
當﹣1≤t<0時,3a≤4t﹣,
由4t﹣在[﹣1,0)遞增,可得t=﹣1時,取得最小值1,
可得3a≤1,即a≤.
綜上可得a的范圍是[﹣,
].
另解:設t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,
由題意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,
解得a的范圍是[﹣,
].
故選:A.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinxcosx+cos2x-
.
(Ⅰ)求函數f(x)的最小正周期及單調遞增區間;
(Ⅱ)將函數f(x)圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數g(x)的圖象.若關于x的方程g(x)-k=0,在區間[0,]上有實數解,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4sinxsin(x+ )﹣1(x∈R).
(1)求函數f(x)的最小正周期;
(2)求函數f(x)在區間[0, ]上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某旅游點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元.根據經驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每提高1元,租不出去的自行車就增加3輛.
規定:每輛自行車的日租金不超過20元,每輛自行車的日租金x元只取整數,并要求出租所有自行車一日的總收入必須超過一日的管理費用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費后的所得).
(1)求函數y=f(x)的解析式及定義域;
(2)試問日凈收入最多時每輛自行車的日租金應定為多少元?日凈收入最多為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(ax+b)-x2-4x,曲線y=f(x)在點(0,f(0))處的切線方程為y=4x+4.
(Ⅰ)求a,b的值;
(Ⅱ)討論f(x)的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)= 在區間(﹣∞,2)上為單調遞增函數,則實數a的取值范圍是( )
A.[0,+∞)
B.(0,e]
C.(﹣∞,﹣1]
D.(﹣∞,﹣e)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com