精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=m(x-1)2-2x+3+ln x,m≥1.
(1)當m=時,求函數f(x)在區間[1,3]上的極小值;
(2)求證:函數f(x)存在單調遞減區間[a,b];
(3)是否存在實數m,使曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點?若存在,求出實數m的值;若不存在,請說明理由.

(1) 極小值為f(2)=ln 2- (2)見解析   (3) 存在實數m=1使得曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數,.
(1)若,求的單調遞增區間;
(2)若曲線軸相切于異于原點的一點,且的極小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax+x2-xlna(a>0,a≠1).
(1)當a>1時,求證:函數f(x)在(0,+∞)上單調遞增;
(2)若函數y=|f(x)-t|-1有三個零點,求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

yf(x)是二次函數,方程f(x)=0有兩個相等的實
根,且f′(x)=2x+2.
(1)求yf(x)的表達式;
(2)求yf(x)的圖象與兩坐標軸所圍成圖形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)設函數G(x)=若方程G(x)=a2有且僅有四個解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3ax-1
(1)若f(x)在實數集R上單調遞增,求a的取值范圍;
(2)是否存在實數a,使f(x)在(-1,1)上單調遞減,若存在,求出a的取值范圍;若不存在,說明理由;
(3)證明f(x)=x3ax-1的圖象不可能總在直線ya的上方.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,).
(1)判斷曲線在點(1,)處的切線與曲線的公共點個數;
(2)當時,若函數有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知:函數.
(1)函數的圖像在點處的切線的傾斜角為,求的值;
(2)若存在使,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求由直線x=0,x=1,y=0和曲線yx(x-1)圍成的圖形面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视