【題目】已知函數f (x)=x-(a+1)ln x-(a∈R),g (x)=
x2+ex-xex.
(1)當x∈[1,e] 時,求f (x)的最小值;
(2)當a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)求出f(x)的定義域,求導數f′(x),得其極值點,按照極值點a在[1,e2]的左側、內部、右側三種情況進行討論,可得其最小值;
(2)存在x1∈[e,e2],使得對任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即 f(x)min<g(x)min,由(1)知f(x)在[e,e2]上遞增,可得f(x)min,利用導數可判斷g(x)在[﹣2,0]上的單調性,可得g(x)min,由 f(x)min<g(x)min,可求得a的范圍;
(1)f(x)的定義域為(0,+∞),f′(x)(a∈R),
當a≤1時,x∈[1,e2],f′(x)≥0,f(x)為增函數,
所以f(x)min=f(1)=1﹣a;
當1<a<e2時,x∈[1,a],f′(x)≤0,f(x)為減函數,x∈[a,e2],f′(x)≥0,f(x)為增函數,
所以f(x)min=f(a)=a﹣(a+1)lna﹣1;
當a≥e2時,x∈[1,e2],f′(x)≤0,f(x)為減函數,
所以f(x)min=f(e2)=e2﹣2(a+1);
綜上,當a≤1時,f(x)min=1﹣a;
當1<a<e2時,f(x)min=a﹣(a+1)lna﹣1;
當a≥e2時,f(x)min=e2﹣2(a+1);
(2)存在x1∈[e,e2],使得對任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即 f(x)min<g(x)min,
當a<1時,由(1)可知,x∈[e,e2],f(x)為增函數,
∴f(x1)min=f(e)=e﹣(a+1)
g′(x)=x+ex﹣xex﹣ex=x(1﹣ex),
當x∈[﹣2,0]時g′(x)≤0,g(x)為減函數,g(x)min=g(0)=1,
∴e﹣(a+1)1,a
,
∴a∈(,1).
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,有兩種方式,甲為投資債券等穩健型產品,乙為投資股票等風險型產品,設投資甲、乙兩種產品的年收益分別為、
萬元,根據長期收益率市場預測,它們與投入資金
萬元的關系分別為
,
,(其中
,
,
都為常數),函數
,
對應的曲線
,
如圖所示.
(1)求函數、
的解析式;
(2)若該家庭現有萬元資金,全部用于理財投資,問:如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,其中
為已知實常數,
,則下列命題中錯誤的是( )
A.若,則
對任意實數
恒成立;
B.若,則函數
為奇函數;
C.若,則函數
為偶函數;
D.當時,若
,則
(
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
為實數.
(1)當時,判斷并證明函數
在區間
上的單調性;
(2)是否存在實數,使得
在閉區間
上的最大值為
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com