在平面直角坐標系中,已知點,點
在直線
:
上運動,過點
與
垂直的直線和線段
的垂直平分線相交于點
.
(1)求動點的軌跡
的方程;
(2)過(1)中的軌跡上的定點
作兩條直線分別與軌跡
相交于
,
兩點.試探究:當直線
,
的斜率存在且傾斜角互補時,直線
的斜率是否為定值?若是,求出這個定值;若不是,說明理由.
(1) (2) 當直線
,
的斜率存在且傾斜角互補時,直線
的斜率為定值
解析試題分析:(1)由線段垂直平分線的性質知, ,所以動點
的軌跡
是以
為焦點,直線
為準線的拋物線.易知其標準方程為
.
設、
,
,可由點差法求出
,
,
由直線,
的傾斜角互補,得
定值
試題解析:(1)依題意,得 1分
∴動點的軌跡
是以
為焦點,直線
為準線的拋物線 3分
∴動點的軌跡
的方程為
4分
(2)∵、
,
在拋物線
上
∴ 5分
由①-②得,
∴直線的斜率為
7分
同理可得,直線的斜率為
9分
∴當直線,
的傾斜角互補時,有
即
∴ 11分
由②-③得,
∴直線的斜率為
④ 13分
將代入④,得
∴當直線,
的斜率存在且傾斜角互補時,直線
的斜率為定值
14分
考點:1、拋物線的定義和標準方程;2、點差法的應用.
科目:高中數學 來源: 題型:解答題
已知點、
為雙曲線
:
的左、右焦點,過
作垂直于
軸的直線,在
軸上方交雙曲線
于點
,且
.圓
的方程是
.
(1)求雙曲線的方程;
(2)過雙曲線上任意一點
作該雙曲線兩條漸近線的垂線,垂足分別為
、
,求
的值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓與橢圓
中心在原點,焦點均在
軸上,且離心率相同.橢圓
的長軸長為
,且橢圓
的左準線
被橢圓
截得的線段
長為
,已知點
是橢圓
上的一個動點.
⑴求橢圓與橢圓
的方程;
⑵設點為橢圓
的左頂點,點
為橢圓
的下頂點,若直線
剛好平分
,求點
的坐標;
⑶若點在橢圓
上,點
滿足
,則直線
與直線
的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知點
,
是動點,且
的三邊所在直線的斜率滿足
.
(1)求點的軌跡
的方程;
(2)若是軌跡
上異于點
的一個點,且
,直線
與
交于點
,問:是否存在點
,使得
和
的面積滿足
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(1)已知點和
,過點
的直線
與過點
的直線
相交于點
,設直線
的斜率為
,直線
的斜率為
,如果
,求點
的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,
的外角平分線
與邊
的延長線相交于點
,則
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓經過點
,其左、右頂點分別是
、
,左、右焦點分別是
、
,
(異于
、
)是橢圓上的動點,連接
交直線
于
、
兩點,若
成等比數列.
(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段為直徑的圓過點
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓兩焦點坐標分別為
,
,一個頂點為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在斜率為的直線
,使直線
與橢圓
交于不同的兩點
,滿足
. 若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知、
為橢圓
的左、右焦點,且點
在橢圓
上.
(1)求橢圓的方程;
(2)過的直線
交橢圓
于
兩點,則
的內切圓的面積是否存在最大值?
若存在其最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com