【題目】某中學校本課程開設了A,B,C,D共4門選修課,每個學生必須且只能選修1門選修課,現有該校的甲、乙、丙3名學生.
(1)求這3名學生選修課所有選法的總數;
(2)求恰有2門選修課沒有被這3名學生選擇的概率;
(3)求A選修課被這3名學生選擇的人數ξ的分布列及數學期望.
【答案】
(1)解:每個學生有四個不同的選擇,
根據分步乘法計數原理,
這3名學生選修課所有選法的總數N=4×4×4=64
(2)解:恰有2門選修課這3名學生都沒選擇的概率為:
=
=
(3)解:A選修課被這3名學生選擇的人數為ξ,則ξ的可能取值為0,1,2,3,
P(ξ=0)= =
,
P(ξ=1)= =
,
P(ξ=2)= =
,
P(ξ=3)= =
,
∴ξ的分布列為:
ξ | 0 | 1 | 2 | 3 |
P |
Eξ= =
【解析】(1)每個學生有四個不同的選擇,由此根據分步乘法計數原理,能求出這3名學生選修課所有選法的總數.(2)由已知利用排列組合知識能求出恰有2門選修課這3名學生都沒選擇的概率.(3)A選修課被這3名學生選擇的人數為ξ,則ξ的可能取值為0,1,2,3,分別求出相應的概率,由此能求出ξ的分布列和Eξ.
【考點精析】通過靈活運用離散型隨機變量及其分布列,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列即可以解答此題.
科目:高中數學 來源: 題型:
【題目】求滿足下列條件的橢圓方程:
(1)長軸在x軸上,長軸長等于12,離心率等于 ;
(2)橢圓經過點(﹣6,0)和(0,8);
(3)橢圓的一個焦點到長軸兩端點的距離分別為10和4.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了增強市民的環境保護組織,某市面向全市征召n名義務宣傳志愿者,成立環境保護宣傳組織,現按年齡把該組織的成員分成5組:[20,25),[25,30),[30,35),[35,40),[40,45]. 得到的頻率分布直方圖如圖所示,已知該組織的成員年齡在[35,40)內有20人
(1)求該組織的人數;
(2)若從該組織年齡在[20,25),[25,30),[30,35)內的成員中用分層抽樣的方法共抽取14名志愿者參加某社區的宣傳活動,問應各抽取多少名志愿者?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有甲、乙兩個靶.某射手向甲靶射擊一次,命中的概率為 ,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為
,每命中一次得2分,沒有命中得0分.該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊. (Ⅰ)求該射手恰好命中一次得的概率;
(Ⅱ)求該射手的總得分X的分布列及數學期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE.若M為線段A1C的中點,則在△ADE翻轉過程中: ①|BM|是定值;
②點M在圓上運動;
③一定存在某個位置,使DE⊥A1C;
④一定存在某個位置,使MB∥平面A1DE.
其中正確的命題是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率低于40%,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35
B.0.25
C.0.20
D.0.15
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com